Математика и статистика

  • 1701. Решение кубических уравнений в радикалах
    Информация пополнение в коллекции 09.12.2008

    Так кому же принадлежит открытие общего способа решения кубических уравнений? Есть разные мнения. Согласно одному из них, способ общего решения уравнения впервые был найден профессором университета в Болонье (Италия) Сципионом дель Ферро. Эта версия довольно таки сомнительна. Дело в том, что у Ферро был ученик Фиоре, который утверждал, что знает способ решения кубического уравнения от своего учителя. Но Никколо Тарталья ещё раньше, в 1530 году, добился решения для некоторых частных случаев этого уравнения. Решения достались ему с большим трудом, и поэтому он не очень доверял заявлению Фиоре, о том, что ему известно решение, и считал это хвастовством. Оба математика держали в тайне свои способы решения. И вот Тарталья, уверенный в победе, вызывает Фиоре на публичный математический поединок. Поединок назначают на 22 февраля 1535 года. В этот день оба математика должны были явиться к нотариусу. Каждый должен был принести 30 задач и обменяться ими друг с другом в присутствии нотариуса. На решение задач давалось 50 дней. Кто к концу этого срока решит наибольшее число задач из 30, предложенных соперником, тот и будет считаться победителем и, сверх того, получит по 5 сольди за каждую задачу.

  • 1702. Решение линейной системы уравнений с тремя неизвестными
    Контрольная работа пополнение в коллекции 14.03.2010

    1) Областью определения данной функции являются все действительные значения аргумента х, то есть D(y) = {х: х}, а это значит, что функция непрерывна на всей числовой прямой и ее график не имеет вертикальных асимптот.

  • 1703. Решение линейных уравнений различными методами
    Курсовой проект пополнение в коллекции 06.09.2012

    ABCDEFG1112=(B3-B1)/(A3-A1)31,22,1=(C4-C2)/(A5-A1)4=(B5-B3)/(A5-A3)=(D5-D3)/(A7-A1)51,42,9=(C6-C4)/(A7-A3)=(E6-E4)/(A9-A1)6=(B7-B5)/(A7-A5)=(D7-D5)/(A9-A3)=(F7-F5)/ (A11-A1)71,63,8=(C8-C6)/(A9-A5)=(E8-E6)/(A11-A3)8=(B9-B7)/(A9-A7)=(D9-D7)/(A11-A5)91,85,2=(C10-C8)/(A11-A7)10=(B11-B9)/(A11-A9)1125,9

  • 1704. Решение математических многочленов
    Информация пополнение в коллекции 20.12.2009

    Переменная величина у Декарта выступала в двойной форме: как отрезок переменной длины и постоянного направления - текущая координата точки, описывающей своим движением кривую, и как непрерывная числовая переменная, пробегающая совокупность чисел, выражающих этот отрезок. Двоякий образ переменной обусловил взаимопроникновение геометрии и алгебры. У Декарта действительное число трактовалось как отношение любого отрезка к единичному, хотя сформулировал такое определение лишь И. Ньютон; отрицательные числа получили у Декарта реальное истолкование в виде направленных ординат. Декарт значительно улучшил систему обозначений, введя общепринятые знаки для переменных величин (x, у, z) и коэффициентов (a, b, с), а также обозначения степеней (х4, a5). Запись формул у Декарта почти ничем не отличается от современной.

  • 1705. Решение матриц
    Контрольная работа пополнение в коллекции 21.11.2010

    Элементарными преобразованиями матрицы называются следующие преобразования: 1) умножение строки матрицы на число, отличное от нуля; 2) прибавление к одной строке матрицы другой строки; 3) перестановка строк; 4) вычеркивание (удаление) одной из одинаковых строк (столбцов); 5) транспонирование матрицы;

  • 1706. Решение некоторых уравнений и неравенств с параметром
    Информация пополнение в коллекции 12.01.2009

     

    1. Далингер В. А. “Геометрия помогает алгебре”. Издательство “Школа - Пресс”. Москва 1996 г.
    2. Далингер В. А. “Все для обеспечения успеха на выпускных и вступительных экзаменах по математике”. Издательство Омского педуниверситета. Омск 1995 г.
    3. Окунев А. А. “Графическое решение уравнений с параметрами”. Издательство “Школа - Пресс”. Москва 1986 г.
    4. Письменский Д. Т. “Математика для старшеклассников”. Издательство “Айрис”. Москва 1996 г.
    5. Ястрибинецкий Г. А. “Уравнений и неравенства, содержащие параметры”. Издательство “Просвещение”. Москва 1972 г.
    6. Г. Корн и Т.Корн “Справочник по математике”. Издательство “Наука” физикоматематическая литература. Москва 1977 г.
    7. Амелькин В. В. и Рабцевич В. Л. “Задачи с параметрами” . Издательство “Асар”. Минск 1996 г.
  • 1707. Решение некоторых уравнений и неравенств с параметром
    Контрольная работа пополнение в коллекции 15.12.2011

    Цель моей работы состоит в том, чтобы познакомится с некоторыми типами задач с параметрами (уравнения, неравенства, задачи, связанные с исследованием квадратного трехчлена, коэффициенты которого зависят от параметра, и т. д.). И познакомиться с новыми, незнакомыми для себя методами решений уравнений, неравенств и т.д. Я считаю, что полезно владеть различными методами решения подобных задач - аналитическими и графическими, уметь переводить словесное условие задачи в аналитическую форму - сводить ее к решению уравнений, неравенств.

  • 1708. Решение одного класса игр на матроидах
    Статья пополнение в коллекции 12.01.2009

    Будем считать успехом отклонение рассматриваемого проекта решения (т.е. отрицательное решение вопроса). Для простоты будем считать, что члены "Большой пятерки" не воздерживаются при голосовании. Тогда коалиция S противников проекта (в число которых мы включаем и воздержавшихся при голосовании) будет выигрывающей, если или . Характеристическая функция этой игры имеет вид:

  • 1709. Решение одного нелинейного уравнения
    Информация пополнение в коллекции 24.11.2009

    Изучив методы и применив их к данному уравнению приходим к такому выводу: при решении данного уравнения 4 известными способами результат одинаков во всех случаях. Но количество итераций при прохождении метода значительно отличается. Зададим приближенную точность = . Если в случае половинного деления количество итераций составляют 20, при методе простых итераций равно 6, при методе секущих они составляют 5, а при методе касательных их количество равно 4. Из полученного результата видно, что более эффективным методом является метод касательных. В свою очередь метод половинного деления является более неэффективным, затрачивающий больше времени на выполнение, но являющийся самым простым из всех перечисленных методов при исполнении. Но не всегда результат будет таковым. Подставляя другие нелинейные уравнения в программу, в результате получается, что при методе простой итерации при разных видах уравнений количество итераций колеблется. Количество итераций может быть значительно больше, чем в методе половинного деления и меньше, чем в методе касательных.

  • 1710. Решение оптимизационной задачи линейного программирования
    Реферат пополнение в коллекции 09.12.2008

    В зависимости от своей постановки, любая из задач оптимизации может решаться различными методами, и наоборот любой метод может применяться для решения многих задач. Методы оптимизации могут быть скалярными (оптимизация проводится по одному критерию), векторными (оптимизация проводится по многим критериям), поисковыми (включают методы регулярного и методы случайного поиска), аналитическими (методы дифференциального исчисления, методы вариационного исчисления и др.), вычислительными (основаны на математическом программировании, которое может быть линейным, нелинейным, дискретным, динамическим, стохастическим, эвристическим и т.д.), теоретико-вероятностными, теоретико-игровыми и др. Подвергаться оптимизации могут задачи как с ограничениями, так и без них.
    Линейное программирование - один из первых и наиболее подробно изученных разделов математического программирования. Именно линейное программирование явилось тем разделом, с которого начала развиваться сама дисциплина «математическое программирование». Термин «программирование» в названии дисциплины ничего общего с термином «программирование (т.е. составление программ) для ЭВМ» не имеет, так как дисциплина «линейное программирование» возникла еще до того времени, когда ЭВМ стали широко применяться при решении математических, инженерных, экономических и др. задач. Термин «линейное программирование» возник в результате неточного перевода английского «linear programming». Одно из значений слова «programming» - составление планов, планирование. Следовательно, правильным переводом «linear programming» было бы не «линейное программирование», а «линейное планирование», что более точно отражает содержание дисциплины. Однако, термин линейное программирование, нелинейное программирование и т.д. в нашей литературе стали общепринятыми.
    Итак, линейное программирование возникло после Второй Мировой Войны и стал быстро развиваться, привлекая внимание математиков, экономистов и инженеров благодаря возможности широкого практического применения, а так же математической «стройности».
    Можно сказать, что линейное программирование применимо для построения математических моделей тех процессов, в основу которых может быть положена гипотеза линейного представления реального мира: экономических задач, задач управления и планирования, оптимального размещения оборудования и пр.

  • 1711. Решение параболических уравнений
    Курсовой проект пополнение в коллекции 13.10.2009

    Требуется найти функцию в области с границей при заданных краевых условиях. Согласно методу сеток в плоской области строится сеточная область , состоящая из одинаковых ячеек. При этом область должна как можно лучше приближать область . Сеточная область (то есть сетка) состоит из изолированных точек, которые называются узлами сетки. Число узлов будет характеризоваться основными размерами сетки : чем меньше , тем больше узлов содержит сетка. Узел сетки называется внутренним, если он принадлежит области , а все соседние узлы принадлежат сетке . В противном случае он называется граничным. Совокупность граничных узлов образует границу сеточной области .

  • 1712. Решение практических заданий по дискретной математике
    Контрольная работа пополнение в коллекции 21.01.2011

    Проблемы, связанные с понятиями бесконечности, дискретности и непрерывности, рассматривались в математике, как и в философии, древнегреческими мыслителями, начиная с 6 века до нашей эры. Под влиянием сочинений Аристотеля они широко обсуждались средневековыми учеными и философами в странах Европы и Азии. Через всю историю математики проходит идея преодоления между актуальной и потенциальной бесконечностью, с одной стороны, между дискретным характером числа и непрерывной природой геометрических величин с другой. Впервые проблема математической бесконечности и связанных с нею понятий была широко поставлена в наиболее общем виде в теории множеств, основы которой были разработаны в последней четверти 19 века Георгом Кантором.

  • 1713. Решение систем дифференциальных уравнений методом Рунге - Кутты 4 порядка
    Курсовой проект пополнение в коллекции 12.01.2009

    Рассмотрим процесс подробнее. Вещество А на протяжении всего процесса расходуется на образование веществ В и С. Концентрации вещества А в начальный момент времени расходуется быстрее, чем концентрации его же в конце процесса. Это обусловлено тем, что скорость химической реакции зависит от концентрации реагирующего вещества. Производная имеет знак «минус». Это говорит о том, что вещество расходуется. Следовательно, чем выше концентрация вещества, вступающего в процесс, тем выше скорость его реагирования с другими веществами. Вещества В и С образуются пропорционально, так как, исходя из кинетической схемы процесса и значений констант скоростей химической реакции, видно, что образование этих веществ и расходование этих веществ, одинаково. Производная имеет знак «плюс». Это говорит о том, что вещество образуется.

  • 1714. Решение систем дифференциальных уравнений методом Рунге-Куты 4 порядка
    Реферат пополнение в коллекции 09.12.2008

    Рассмотрим процесс подробнее. Вещество А на протяжении всего процесса расходуется на образование веществ В и С. Концентрации вещества А в начальный момент времени расходуется быстрее, чем концентрации его же в конце процесса. Это обусловлено тем, что скорость химической реакции зависит от концентрации реагирующего вещества. Производная имеет знак «минус». Это говорит о том, что вещество расходуется. Следовательно, чем выше концентрация вещества, вступающего в процесс, тем выше скорость его реагирования с другими веществами. Вещества В и С образуются пропорционально, так как, исходя из кинетической схемы процесса и значений констант скоростей химической реакции, видно, что образование этих веществ и расходование этих веществ, одинаково. Производная имеет знак «плюс». Это говорит о том, что вещество образуется.

  • 1715. Решение систем дифференциальных уравнений при помощи неявной схемы Адамса 3-го порядка
    Курсовой проект пополнение в коллекции 18.06.2010

    xu(x)v(x)xu(x)v(x)247,38905613,16,222,197952,024,047,53832493,126,2422,646382,044,087,69060923,146,2823,103872,064,127,84596983,166,3223,57062,084,168,00446893,186,3624,046752,14,28,16616993,26,424,532532,124,248,33113753,226,4425,028122,144,288,49943763,246,4825,533722,164,328,67113763,266,5226,049542,184,368,84630623,286,5626,575772,24,49,02501353,36,627,112642,224,449,20733083,326,6427,660352,244,489,39333133,346,6828,219132,264,529,58308913,366,7228,789192,284,569,77668043,386,7629,370772,34,69,97418243,46,829,96412,324,6410,1756743,426,8430,569412,344,6810,3812373,446,87999931,186962,364,7210,5909513,466,91999931,816982,384,7610,8049033,486,95999932,459722,44,811,0231763,56,99999933,115452,424,8411,2458593,527,03999933,784432,444,8811,4730413,547,07999934,466922,464,9211,7048113,567,11999935,16322,484,9611,9412643,587,15999935,873542,54,999999912,1824943,67,19999936,598232,525,039999912,4285973,627,23999937,337572,545,079999912,6796713,647,27999938,091842,565,119999912,9358173,667,31999938,861342,585,159999913,1971383,687,35999939,646392,65,199999913,4637383,77,39999940,44732,625,239999913,7357233,727,43999941,264392,645,279999914,0132043,747,47999942,097992,665,319999914,2962893,767,51999942,948422,685,359999914,5850933,787,55999943,816042,75,399999914,8797323,87,59999944,701182,725,439999915,1803223,827,63999945,604212,745,479999915,4869853,847,67999946,525472,765,519999915,7998433,867,71999947,465352,785,559999916,1190213,887,75999948,424212,85,599999916,4446473,97,79999949,402452,825,639999916,7768513,927,83999950,400442,845,679999917,1157653,947,87999951,41862,865,719999917,4615273,967,91999952,457322,885,759999917,8142733,987,95999853,517032,95,799999818,17414547,99999854,598152,925,839999818,5412872,945,879999818,9158462,965,919999819,2979722,985,959999819,68781635,999999820,0855373,026,039999820,4912913,046,079999820,9052433,066,119999821,3275573,086,159999821,758402

  • 1716. Решение систем линейных алгебраических уравнений
    Информация пополнение в коллекции 12.01.2009

    В переменную n вводится порядок матрицы системы. С помощью вспомогательной процедуры ReadSystem в двумерный массив a и одномерный массив b вводится c клавиатуры расширенная матрица системы, после чего оба массива и переменная n передаются функции Gauss. В фукции Gauss для каждого k-го шага вычислений выполняется поиск максимального элемента в k-м столбце матрицы начинаяя с k-й строки. Номер строки, содержащей максимальный элемент сохраняеется в переменной l. В том случае если максимальный элемент находится не в k-й строке, строки с номерами k и l меняются местами. Если же все эти элементы равны нулю, то происходит прекращение выполнения функции Gauss c результатом false. После выбора строки выполняется преобразование матрицы по методу Гаусса. Далее вычисляется решение системы и помещается в массив x. Полученное решение выводится на экран при помощи вспомогательной процедуры WriteX.

  • 1717. Решение систем линейных алгебраических уравнений методом Гаусса и Зейделя
    Реферат пополнение в коллекции 09.12.2008

    В переменную n вводится порядок матрицы системы. С помощью вспомогательной процедуры ReadSystem в двумерный массив a и одномерный массив b вводится c клавиатуры расширенная матрица системы, после чего оба массива и переменная n передаются функции Gauss. В фукции Gauss для каждого k-го шага вычислений выполняется поиск максимального элемента в k-м столбце матрицы начинаяя с k-й строки. Номер строки, содержащей максимальный элемент сохраняеется в переменной l. В том случае если максимальный элемент находится не в k-й строке, строки с номерами k и l меняются местами. Если же все эти элементы равны нулю, то происходит прекращение выполнения функции Gauss c результатом false. После выбора строки выполняется преобразование матрицы по методу Гаусса. Далее вычисляется решение системы и помещается в массив x. Полученное решение выводится на экран при помощи вспомогательной процедуры WriteX.

  • 1718. Решение систем линейных дифференциальных уравнений пятиточечным методом Адамса – Башфорта
    Курсовой проект пополнение в коллекции 09.12.2008

    Теперь рассмотрим модуль PACMBtn рреализующий алгоритм построения вычисленных данных . Процедура реализующая алгоритм пяти точечного метода прогноза и коррекции Адамса-Башфорта , - MethodAdamsaBashforta ( h,tp,ta : real ; NU : array[1..N] of real ) параметры которой представляют : h - начальный шаг интегрирования ; tp время интегрирования трех точечным методом прогноза и коррекции , ta время интегрирования по методу Адамса-Башфорта , NU массив начальных условий . Данная процедура способна производить решения систем линейных дифференциальных уравнений произвольного размера , на произвольном промежутке времени интегрирования . Вычисленные данные записываются в файлы prandcom*.df . Метод реализующий алгоритм построения вычисленных данных произвольной степени сложности , с возможностью построения графиков с не линейно изменяющимся шагом , построения одновременно любого количества графиков , - есть объект TCartFile , обладающего всеми свойствами родителей Tform , Tchart .

  • 1719. Решение систем уравнений
    Контрольная работа пополнение в коллекции 26.02.2012

    Уравнение высоты находим из тех соображений, что ее направляющий вектор должен быть перпендикулярен плоскости, а, следовательно, совпадать с нормалью. Вектор нормали к плоскости запишем из уравнения плоскости: (- 1, 5, 4)

  • 1720. Решение систем уравнений
    Контрольная работа пополнение в коллекции 23.01.2012

    Совместность данной системы проверим по теореме Кронекера-Капелли. С помощью элементарных преобразований расширенную матрицу приведем к трапециевидной форме