Математика и статистика

  • 1781. Свойства многогранников
    Методическое пособие пополнение в коллекции 29.04.2012

    Воспользуемся равенством 6В - 6Р + 6Г = 12, получающимся умножением обеих частей сооотношения Эйлера на 6. По доказанному выше, имеет место неравенство 6В 4Р и, следовательно, неравенство 6Г - 2Р 12. С другой стороны, 6Г = 6Г3 + 6Г4 + 6Г5 + 6Г6 + … , 2Р = 3Г3 + 4Г4 + 5Г5 + 6Г6 + … . Подставляя эти выражения в неравенство, получим неравенство 3Г3 + 2Г4 + Г5 + 0Г6 - Г7 - … 12. В левой части, начиная с Г7 стоят отрицательные числа. Поэтому для того, чтобы вся сумма была больше или равна 12 нужно, чтобы хотя бы одно из чисел Г3 или Г4 или Г5 было отлично от нуля, т.е. в многограннике существовала грань с соответствующим числом ребер.

  • 1782. Свойства пространства с некоторыми компактифицированными измерениями
    Информация пополнение в коллекции 12.01.2009

    III. Для третьей группы “линейных” измерений могут быть применены следующие рассуждения. Объект [TR], имеет заряд, что проявляется воздействием T-измерения объекта на суперпространство и объекты, принадлежащие ему (см. далее гл. 12). Объект оказывает такое воздействие во всех трех “линейных” измерениях. Однако, можно предположить, что одно или несколько “линейных” измерений могут быть локально компактифицированны для данного объекта с радиусом кривизны, равным радиусу кривизны T. Тогда невозможно установить воздействие объекта на суперпространство в таком “линейном” измерении. Тем самым заряд в таком измерении будет отсутствовать. Если же мы будем рассматривать два или три объекта с уменьшенным зарядом, находящихся в достаточной близости друг от друга, то сможем предположить наличие у такого комплекса объектов суммарного заряда, зависящего от взаиморасположения компактифицированных “линейных” измерений объектов, входящих в комплекс. Данный комплекс характеризуется таким взаиморасположением компактифицированных “линейных” измерений, что они взаимно компенсируют или дополняют сворачивание. Например, комплекс из трех объектов с двумя компактифицированными “линейными” измерениями у каждого имеет расположение некомпактифицированных “линейных” измерений так, что они не совпадают для каждого из объектов, входящих в комплекс: у 1-го X, у 2-го Y, у 3-го Z. Суммарный заряд такого комплекса такой же, как и у объекта с отсутствующими компактифицированными “линейными” измерениями.

  • 1783. Свойства силиката магния с примесью хрома в пористом кремнии
    Статья пополнение в коллекции 12.01.2009

    В отожженным при 700 C образцах ПК на КЭС 0.01 наблюдался известный анизотропный спектр ЭПР от Pb-центров при комнатной температуре и 77K (рис. 2), который, согласно выводам [5], принадлежит дислокацициям в наноразмерных гранулах кремния в ПК. В чистом ПК и в ПК с одним только хромом этот спектр имеет сопоставимую и значительную интенсивность. В ПК с магнием интенсивность спектра на порядок меньше, что можно связать с расходованием материала гранул кремния на образование фазы Mg2SiO4 :Cr. После отжига при 1000 C спектр не наблюдается (видимо, из-за того, что почти весь ПК пошел на формирование форстерита и оксида кремния). Судя по меньшей ФЛ образца, представленного кривой 3, по сравнению с образцом, показанным кривой 1 (рис. 1, a), при 1000 C кремний в большей степени, чем при 700 C, расходовался на образование SiO2. Как видно из рис. 2, в спектрах ПК с хромом и ПК с хромом и магнием (спектры 2 и 3 соответственно) просматривается узкая линия с g-фактором около 2. Возможно, эта узкая линия принадлежит четырехвалентному хрому. Для образца только с хромом (спектр 2) это означало бы возможность встраивания ионов Cr4+ в SiO2 на место кремния. Однако данная гипотеза нуждается в дополнительной проверке. В ПК на КДБ 0.005 сигнал ЭПР, как и ранее [5], был неразличим на фоне шумов из-за перезарядки Pb-центров, вызванной понижением уровня Ферми.

  • 1784. Свойства усредненной функции с сильной осцилляцией
    Дипломная работа пополнение в коллекции 09.12.2008

    Последние два слагаемых полученных при интегрировании содержат в произведении , то есть при возрастании x эти слагаемые будут очень быстро уменьшатся и весь интеграл при становится очень малым по сравнению с первой частью. Поэтому можно считать что при

  • 1785. Связность графов
    Дипломная работа пополнение в коллекции 10.02.2012

    "Некогда мне была предложена задача об острове, расположенном в городе Кенигсберге и окруженном рекой, через которую перекинуто семь мостов. Спрашивается, может ли кто-нибудь непрерывно обойти их, проходя только однажды через каждый мост. И тут же мне было сообщено, что никто еще до сих пор не мог это проделать, но никто и не доказал, что это невозможно. Вопрос этот, хотя и банальный, показался мне, однако, достойным внимания тем, что для его решения недостаточны ни геометрия, ни алгебра, ни комбинаторное искусство. После долгих размышлений я нашел легкое правило, основанное на вполне убедительном доказательстве, с помощью которого можно во всех задачах такого рода тотчас же определить, может ли быть совершен такой обход через какое угодно число и как угодно расположенных мостов или не может. Множество самых разнообразных задач естественно формулируется в терминах графов. Так, например, могут быть сформулированы задачи составления расписаний в исследовании операций, анализа сетей в электротехнике, установления структуры молекул в органической химии, сегментации программ в программировании, анализа цепей Маркова в теории вероятностей. В задачах, возникающих в реальной жизни, соответствующие графы часто оказываются так велики, что их анализ неосуществим без ЭВМ. Таким образом, решение прикладных задач с использованием теории графов возможно в той мере, в какой возможна обработка больших графов на ЭВМ, и поэтому эффективные алгоритмы решения задач теории графов имеют большое практическое значение.

  • 1786. Связь больших чисел с константами физики и космотологии
    Доклад пополнение в коллекции 12.01.2009

    Гипотеза Дирака основывалась на предположении о непостоянстве фундаментальных констант, в частности, на изменении гравитационной константы G со временем. Однако эта гипотеза вступила в острое противоречие с опытными данными. Проведенные длительные исследования возможных вариаций фундаментальных констант не выявили ни одного подобного факта [1]. Более того, с большой точностью подтверждены факты неизменности физических констант. Так, например, оценки верхних пределов возможных изменений констант слабого и гравитационного взаимодействий составляют соответственно 10-12 год-1 и 10-10 год-1, а констант электромагнитного и сильного взаимодействий соответственно 10-17 год-1 и 10-19 год-1 [2]. Оценка верхнего предела возможных изменений константы mp/me составляет 10-13 год-1 [2], а констант c, ?, h соответственно 10-12 год-1,10-17 год-1, 10-12 год-1 [1]. Все исследования последствий возможных изменений констант показывают, что с фундаментальными константами следует соблюдать осторожность[2]. Исследования показали, что даже незначительные вариации фундаментальных констант привели бы к невозможности существования наблюдаемого мира [2]. Тем не менее, неудача с гипотезой, основанной на предполагаемых вариациях констант, не снизила интереса к большим числам. Выявленное множество совпадений больших чисел все еще нуждается в объяснении. За эту проблему брались многие известные физики. Попытки Эддингтона и других исследователей объяснить совпадения больших чисел на основе физических принципов не увенчались успехом [1]. Альтернативные объяснения совпадения больших чисел, предложенные Дикке, Хойлом, Картером, известные как слабый и сильный антропные принципы, также не решают проблему [1,5]. Как отмечает Аракелян Г.Б.[1]: “Антропный принцип подвергается критике со стороны физиков и особенно философов за спекулятивность, метафизичность, разрыв причинно-следственных связей”. По мнению П.Девиса [5]: “Весьма возможно, что в будущем будут найдены объяснения некоторых из рассмотренных численных совпадений в рамках теоретической физики, а не биологии. В этом случае таинственное число 1040 будет выведено математически”.

  • 1787. Связь трех важнейших констант
    Доклад пополнение в коллекции 12.01.2009

    В физике мы имеем дело с двумя классами констант с физическими константами и с геометрическими константами. Я склонен считать, и к этому меня подтолкнули результаты исследования фундаментальных физических констант, что постоянная тонкой структуры (a) не есть физическая константа, а является геометрической константой. Поэтому представляет интерес выяснить какая существует связь у этой константы с другими геометрическими константами. По моему убеждению, известная связь постоянной тонкой структуры (a) с некоторыми физическими константами (постоянной Планка, зарядом , скоростью света) есть вторичное проявление более глубокой взаимосвязи физики и геометрии. Истоки такой связи и роль в этом математических констант современной наукой еще не раскрыты. На мой взгляд , все безразмерные константы очень жестко связаны между собой внутри собственного семейства безразмерных констант, а их связь с размерными фундаментальными физическими константами является лишь следствием, т. е. вторичным проявлением общей взаимосвязи фундаментальных констант. Здесь уместно сослаться на мнение А.Пуанкаре о дополнительности физики и геометрии. Согласно Пуанкаре, на опыте мы всегда наблюдаем некую “сумму” физики и геометрии [2]. Если это так, то подобная “сумма” физики и геометрии должна проявляться на примере единого константного базиса в виде совокупности физических и геометрических констант. Я считаю, что в качестве единого константного базиса для описания законов природы достаточно всего лишь трех физических и двух геометрических констант. Мне удалось установить, что среди семейства фундаментальных физических констант существует только пять первичных суперконстант, от которых происходят все другие константы [1]. В пятиконстантном онтологическом базисе три суперконстанты размерные, а две безразмерные [1]. Три размерные онтологические суперконстанты являются физическими, а две безразмерные онтологические суперконстанты геометрическими. Пяти первичных суперконстант оказалось вполне достаточно, чтобы на их основе получить расчетом множество других фундаментальных констант [1]. Теперь становится понятным, что сотни констант в современной физике необосновано наделены фундаментальным статусом, поскольку они не являются первичными константами. Здесь уместно вспомнить правило Оккама, в соответствии с которым не следует без необходимости увеличивать число сущностей, а также мнение Френеля о том, что “природа склонна к управлению многим с помощью малого” [3].

  • 1788. Секрет возникновения арабских чисел
    Информация пополнение в коллекции 30.01.2011

    711 год можно считать годом открытия индийских цифр на территориях ближнего Востока, в Европу они, конечно же, попали гораздо позже. Почему именно Ближнего востока? Что ж, вполне законный вопрос. Дело в том, что замечательный город Бахда или как мы привыкли называть его - Багдад в те времена был довольно привлекательным местом для ученых. Там было открыто множество научный и псевдонаучных школ, в которых, тем не менее, шёл обмен полученными знаниями и умениями. В 711 туда попал трактат о звёздах и заодно, о цифрах. Сейчас трудно сказать, были ли прогрессивными взгляды на цифры того индийского учёного представившего миру астрономический доклад, но вот то, что мы при его помощи сейчас обладаем арабскими цифрами поистине не забываемо и заслуживает премногой благодарности. В то время в науке пользовались в основном тремя системами исчисления чисел: римское, греческое и египетско персидское. В принципе, они были достаточно удобны для ведения небольшого хозяйства скажем одного человека, но записывать при их помощи большие числа было весьма трудно, хотя древнегреческие философы и математики назвали свою систему счёта и записи цифр чуть ли ни самой совершенной в мире. Это по большому счёту, конечно, было не правда.

  • 1789. Середні Значення
    Информация пополнение в коллекции 12.01.2009

    Середнє квадратичне відхилення. Ми вже встановили, що сума відхилень даних від середнього значення дорівнює нулю. Тому, якби ми вирішили шукати середній показник відхилень, то він також дорівнював би нулю. В статистиці користуються іншим показником середнім квадратичним відхиленням, який знаходять так: усі відхилення підносять до квадрата; знаходять середнє арифметичне цих квадратів; із знайденого середнього арифметичного добувають квадратний корінь. Середнє квадратичне відхилення позначають грецькою буквою ? (“сигма” мала):

  • 1790. Середні значення та їх оцінки
    Контрольная работа пополнение в коллекции 21.12.2010

    При m1 = m2 = ……= mn = a.

    1. Якщо від усіх варіантів (х) відняти сталу величину (хо) і за різницями (х хо = х? ) обчислити середню арифметичну (х?) , то вона буде менша від середньої арифметичної на таку саму величину хо? з цього випливає, що середню з варіантів (х) можна дістати, додавши до знайденої середньої х? ту саму постійну величину:
  • 1791. Серьёзные лекции по высшей экономической математике
    Информация пополнение в коллекции 12.01.2009
  • 1792. Сетевые методы в планировании
    Курсовой проект пополнение в коллекции 09.12.2008

    Резерв критической операции равен нулю. Рассмотрим некоторую некритическую операцию / i , j /. Какое максимальное количество времени можно выделить для ее выполнения без задержки своевременного окончания всего проекта? Операция / i ,j / может начаться не ранее Е/ i /и должна закончиться не позднее L ( j ). Таким образом, без задержки окончания проекта на выполнение операции / i, j / можно выделить не более L(j)-Е(i) единиц времени. Следовательно, при выполнении этой операции можно допустить максимальную задержку L( j )-Е( i )- d ij >= 0. Величина L(j )-E(i)-d ij называется полным резервом времени операции ( i , j ). Какое максимальное количество времени может быть выделено для выполнения операции (i ,j ) без введения дополнительных временных ограничений на последующие операции? Для соблюдения этого условия операция ( i , j ) должна быть закончена к моменту времени Е ( j ). Поскольку операция ( i , j ) может начаться не ранее E ( i ), на ее выполнение без введения дополнительных ограничений на последующие операции можно выделять не более E( j )-E(i ) единиц времени. Величина E ( j ) -E ( i ) - d ij Называется свободным резервом времени операции ( i ,j ). Свободный резерв времени равен максимальной задержке выполнения операции ( i , j ), не влияющей на выполнение последующих операций. Какое максимальное количество времени может быть выделено для выполнения операции ( i,j ) без введения дополнительных временных ограничений на любую операцию проекта? Для выполнения этого условия операция ( i,j ) должна начаться в момент времени L(i ) и закончиться к моменту времени E(j ), cледовательно, на выполнение операции ( i,j ) в этом случае можно выделить не более Е ( J ) -L(i) единиц времени. Величина Е( j )- L (i )-d ij называется независимым резервом Времени операции (i ,j ). Независимый резерв времени равен максимальной задержке, которую можно допустить при выполнении операции ( i ,j ) без введения дополнительных временных ограничений на любую другую операцию проекта. Отрицательное значение независимого резерва означает, что любая задержка с выполнением операции приведет к дополнительным ограничениям на выполнение других операций.

  • 1793. Сечение многогранников
    Курсовой проект пополнение в коллекции 22.07.2010

    Решение любых стереометрических задач требует не только вычислительных и логических умений и навыков, но и умений изображать пространственные фигуры на плоскости (например, на листе бумаги, классной доске), что по сути своей тесно связано с темой «Геометрические построения на плоскости». Стереометрические задачи на вычисления и доказательство легко можно решать, используя правильный рисунок пространственной фигуры. При изучении тем «Параллельность прямых и плоскостей в пространстве», «Перпендикулярность прямых и плоскостей», «Углы между прямой и плоскостью, между двумя прямыми, между двумя плоскостями» и других тем прекрасным иллюстрационным материалом является решение позиционных и метрических задач на построение пространственных фигур и сечений этих фигур плоскостями. Основными методами построения сечений многогранников являются следующие методы:

    1. Метод следов. Суть метода заключается в построении вспомогательной прямой, являющейся изображением линии пересечения секущей плоскости с плоскостью какой-либо грани фигуры. Удобнее всего строить изображение линии пересечения секущей плоскости с плоскостью нижнего основания. Эту линию называют следом секущей плоскости. Используя след, легко построить изображения точек секущей плоскости, находящихся на боковых ребрах или гранях фигуры. Последовательно соединяя образы этих точек, получим изображение искомого сечения.
    2. Метод вспомогательных сечений. Этот метод построения сечений многогранников является в достаточной мере универсальным. В тех случаях, когда нужный след (или следы) секущей плоскости оказывается за пределами чертежа, этот метод имеет даже определенные преимущества. Вместе с тем следует иметь в виду, что построения, выполняемые при использовании этого метода, зачастую получаются «скученными». Тем не менее, в некоторых случаях метод вспомогательных сечений оказывается наиболее рациональным.
    3. Комбинированный метод построения сечений. Суть комбинированного метода построения сечений многогранников состоит в применении теорем о параллельности прямых и плоскостей в пространстве в сочетании с методом следов и методом вспомогательных сечений.
    4. Координатный метод построения сечений. Суть координатного метода заключается в вычислении координат точек пересечения ребер или многогранника с секущей плоскостью, которая задается уравнением плоскости. Уравнение плоскости сечения вычисляется на основе условий задачи.
  • 1794. Сила трения и движение тела
    Статья пополнение в коллекции 12.01.2009

    2. Автомобиль массой 1 т пытается въехать без предварительного разгона на гору с уклоном наклона=30, коэффициент трения между шинами автомобиля и поверхностью горы=0,1. С каким ускорением будет двигаться автомобиль? Считать все колеса ведущими. На рис. показаны силы, действующие на автомобиль на наклонной плоскости. Обращаем внимание на то, что в данном случае сила трения опять направлена по направлению движения автомобиля (в сторону, противоположную движению колеса). В данном случае внешней силой, сообщающей автомобилю ускорение, является сила трения ведущих колес о поверхность дороги, а не сила тяги мотора.

  • 1795. Силовые поля или потенциалы?
    Статья пополнение в коллекции 12.01.2009
  • 1796. Симметpия относительно окpужности
    Курсовой проект пополнение в коллекции 12.01.2009
  • 1797. Симметрии многогранника системы независимости
    Статья пополнение в коллекции 12.01.2009

    Пусть RE - евклидово пространство, ассоциированное с E посредством взаимоодназначного соответствия между множеством координатных осей пространства RE и множеством E. Иными словами, RE можно понимать как совокупность вектор-столбцов размерности n с вещественными компонентами, индексированными элементами множества E. Всякому S?? E сопоставим его вектор инциденций по правилу: xSe= 1 при e?S , xSe= 0 при e?S. Очевидно, что это правило задает взаимооднозначное соответствие между 2E и вершинами единичного куба в RE. Многогранник системы независимости определим как P() = Conv(xI | I). Ясно, что векторы инциденций независимых множеств системы независимости , и только они, являются вершинами многогранника P() [4].

  • 1798. Симметрические многочлены от трех переменных
    Курсовой проект пополнение в коллекции 11.04.2012

    Именно, сначала доказывают, что любая степенная сумма может быть выражена через элементарные симметрические многочлены. После этого доказывают, что орбита любого одночлена, содержащего k переменных, выражается через орбиты одночленов от меньшего числа переменных и, в конце концов, - через степенные суммы. Наконец, любой симметрический многочлен от n переменных разлагают на орбиты одночленов. Однако при проведении такого доказательства неудобно использовать те орбиты, которые были определены выше, а следует применять полные орбиты. Именно, если в одночлене все показатели k1, k2,…, kn различны, то орбита 0() содержит n! членов, получающихся из рассмотренного одночлена всевозможными перестановками переменных x1,x2,…,xn. Выпишем это выражение орбиты 0() и назовем его полной орбитой одночлена . Полную орбиту 0П() мы будем рассматривать не только в случае различных показателей k1, k2,…, kn (когда она совпадает с обычной орбитой), но и в случае любых показателей. В любом случае полная орбита 0П() отличается от обычной орбиты 0() лишь числовым множителем, который легко найти, зная, что при любых показателях k1, k2,…, kn сумма коэффициентов в полной орбите равна n!. Именно, если среди показателей k1, k2,…, kn имеется n1 совпадающих между собой, затем n2 совпадающих показателей, отличных от первых, и так далее, вплоть до последней группы nl равных между собой показателей, то

  • 1799. Симметрия
    Информация пополнение в коллекции 12.01.2009

    Первый путь это образование определенных химических соединений, каждое из которых соответствует наследуемому свойству. Однако он содержит много недостатков. И прежде всего он сопряжен с использованием огромного количества различных соединений для передачи всего набора наследуемых свойств. Вполне вероятно, что для передачи свойства «длинные ноги» лошади потребуется совсем иное химическое соединение, чем для передачи того же свойства блохе или слону. Кроме того, некоторые соединения неоднозначны: достаточно вспомнить о левой и правой винной кислоте. Более простым является другой путь кодирования информации, основанный на том же принципе, что и работа телеграфного аппарата системы Морзе или телетайпа. Телеграф «знает» и использует только три «структурных элемента»: тире, точку и пробел. Но информация, записанная с помощью азбуки Морзе, может содержать ошибки (а при передаче наследственности это недопустимо). Так, увидев на телеграфной ленте бессмысленное слово «зергало», телеграфист, надо думать, поймет из контекста, что имеется в виду зеркало. В случае особых сомнений он может запросить передающую станцию. Однако во избежание подобных недоразумений, чтобы исключить искажения, лучше подстраховаться. Наиболее простой способ при передаче каждая буква дублируется: «ззееррккааллоо». Вероятность дважды заменить букву гораздо меньше, чем совершить ошибку один раз. К тому же при таком способе кодирования всегда известно, где начало, а где конец сообщения. Если мы прочитали на ней «топор», то однозначно заключаем, что это никак на «ропот». В силу всех этих преимуществ в природе в ходе естественного отбора для передачи наследственной информации победил принцип «азбуки Морзе». Лента, несущая эту информацию, состоит из молекул сахара и фосфата, построенных в два ряда. В каждом ряду они чередуются через одну: сахар фосфат сахар фосфат. В пределах обоих рядов напротив каждой молекулы сахара располагается тоже молекула сахара, а против каждой молекулы фосфата молекула фосфата. Промежутки между парами сахар сахар (но не фосфат фосфат) заполнены еще четырьмя видами химических соединений, которые получили следующие названия: аденин (А), цитозин (Z), гуанин (G) и тимин (Т). Запомним лишь обозначающие их буквы A, Z ,G и Т. А всегда связано с Т, a Zс G. Одна из этих групп всякий раз связывает пары сахар сахар обоих рядов. В наглядном изображении получается полоса, напоминающая лестницу, поручни которой состоят из сахара и фосфата, перекладины (ступеньки) из групп АТ или ZG. Для ступенек возможны комбинации ТА и АТ наряду c ZG и GZ. Кроме того, последовательность перекладин может быть произвольной: скажем, комбинации Z G могут следовать подряд несколько раз. Но пока такая лестница, подобно лестнице, которой пользуется электрик, остается прямой, она все еще сохраняет возможность оказаться симметричной. Последствия этого могли бы стать катастрофическими для любого живого существа. Но, к счастью, концы «лестницы» спирально закручены. Такая абсолютная асимметрия исключает всякую генетическую ошибку.

  • 1800. Симметрия - символ красоты, гармонии и совершенства
    Информация пополнение в коллекции 14.03.2011

    Среди цветов, например, наблюдается поворотная симметрия. Многие цветы можно повернуть так, что каждый лепесток займет положение соседнего, цветок совместится с самим собой. Минимальный угол такого поворота для различных цветов неодинаков. Для ириса он равен 120° (см. рис. 5), для колокольчика 72° (см. рис. 6), для нарцисса 60° (см. рис. 7). В расположении листьев на стеблях растений наблюдается винтовая симметрия. Располагаясь винтом по стеблю, листья как бы раскидываются в разные стороны и не заслоняют друг друга от света (см. рис. 8), хотя сами листья тоже имеют ось симметрии (см. рис. 9). Рассматривая общий план строения какого-либо животного, мы замечаем обычно известную правильность в расположении частей тела или органов, которые повторяются вокруг некоторой оси или занимают одно и то же положение по отношению к некоторой плоскости. Эту правильность называют симметрией тела. Явления симметрии столь широко распространены в животном мире, что весьма трудно указать группу, в которой никакой симметрии тела подметить нельзя. Симметрией обладают и маленькие насекомые, и крупные животные (см.рис. 10,11, 12).

    • Среди бесконечного разнообразия форм неживой природы в изобилии встречаются такие совершенные образы, чей вид неизменно привлекает наше внимание. Наблюдая за красотой природы, можно заметить, что при отражении предметов в лужах, озерах проявляется зеркальная симметрия.