Математика и статистика

  • 1141. Неопределенный интеграл
    Информация пополнение в коллекции 31.01.2006

    Тогда на основании равенств (1) будет F?1 (х)- F?2 (х)= f(x)- f(x)=0 или ??(х)=[ F?1 (х)- F?2 (х)]??0 при любом значении х на отрезке [a,b]. Но из равенства ??(х)=0 следует, что ?(х) есть постоянная. Действительно, применим теорему Лагранжа к функции ?(х), которая, очевидно, непрерывна и дифференцируема на отрезке [a,b]. Какова бы ни была точка х на отрезке [a,b], мы имеем в силу теоремы Лагранжа ?(х)- ?(а)= (х-а) ??(z), где а < z < x.Так как ??(z)=0, то ?(х)- ?(а)=0, или ?(х)= ?(а). (3)

  • 1142. Непараметрический метод обнаружения гармонического сигналана фоне широкополосного шума
    Статья пополнение в коллекции 12.01.2009

    Классической задачей статистической радиотехники является задача обнаружения сигнала на фоне случайных помех. Большинство из известных в настоящее время алгоритмов основано на байесовском подходе. Недостатком этого подхода является сложность получающихся алгоритмов и не всегда обоснованное на практике требование задания априорных распределений. Подобным недостатком избыточности априорной информации обладают и параметрические методы [2, 3, 4].

  • 1143. Непрерывное Вейвлет-преобразование
    Информация пополнение в коллекции 12.01.2009

    Данный подход позволяет определить факт присутствия в сигнале любой частоты, и интервал ее присутствия. Это значительно расширяет возможности метода по сравнению с классическим преобразованием Фурье, но существуют и определенные недостатки. Согласно следствиям принципа неопределенности Гейзенберга в данном случае нельзя утверждать факт наличия частоты 0 в сигнале в момент времени t0 - можно лишь определить, что спектр частот (1,2) присутствует в интервале (t1,t2). Причем разрешение по частоте (по времени) остается постоянным вне зависимости от области частот (времен), в которых производится исследование. Поэтому, если, например, в сигнале существенна только высокочастотная составляющая, то увеличить разрешение можно только изменив параметры метода. В качестве метода, не обладающего подобного рода недостатками, был предложен аппарат вейвлет анализа. [2]

  • 1144. Непрерывность и иррациональные числа. Сечения Дедекинда
    Информация пополнение в коллекции 07.05.2012

    %20(1667-1754)%20%d0%b8%20%d0%9b%d0%b5%d0%be%d0%bd%d0%b0%d1%80%d0%b4%20%d0%ad%d0%b9%d0%bb%d0%b5%d1%80%20<http://ru.wikipedia.org/wiki/%D0%AD%D0%B9%D0%BB%D0%B5%D1%80,_%D0%9B%D0%B5%D0%BE%D0%BD%D0%B0%D1%80%D0%B4>%20(1707-1783).%20%d0%9a%d0%be%d0%b3%d0%b4%d0%b0%20%d1%82%d0%b5%d0%be%d1%80%d0%b8%d1%8f%20%d0%ba%d0%be%d0%bc%d0%bf%d0%bb%d0%b5%d0%ba%d1%81%d0%bd%d1%8b%d1%85%20%d1%87%d0%b8%d1%81%d0%b5%d0%bb%20%d0%b2%20XIX%20%d0%b2%d0%b5%d0%ba%d0%b5%20%d1%81%d1%82%d0%b0%d0%bb%d0%b0%20%d0%b7%d0%b0%d0%bc%d0%ba%d0%bd%d1%83%d1%82%d0%be%d0%b9%20%d0%b8%20%d1%87%d1%91%d1%82%d0%ba%d0%be%d0%b9,%20%d1%81%d1%82%d0%b0%d0%bb%d0%be%20%d0%b2%d0%be%d0%b7%d0%bc%d0%be%d0%b6%d0%bd%d1%8b%d0%bc%20%d0%ba%d0%bb%d0%b0%d1%81%d1%81%d0%b8%d1%84%d0%b8%d1%86%d0%b8%d1%80%d0%be%d0%b2%d0%b0%d1%82%d1%8c%20%d0%b8%d1%80%d1%80%d0%b0%d1%86%d0%b8%d0%be%d0%bd%d0%b0%d0%bb%d1%8c%d0%bd%d1%8b%d0%b5%20%d1%87%d0%b8%d1%81%d0%bb%d0%b0%20%d0%bd%d0%b0%20%d0%b0%d0%bb%d0%b3%d0%b5%d0%b1%d1%80%d0%b0%d0%b8%d1%87%d0%b5%d1%81%d0%ba%d0%b8%d0%b5%20<http://ru.wikipedia.org/wiki/%D0%90%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%B0>%20%d0%b8%20%d1%82%d1%80%d0%b0%d0%bd%d1%81%d1%86%d0%b5%d0%bd%d0%b4%d0%b5%d0%bd%d1%82%d0%bd%d1%8b%d0%b5%20<http://ru.wikipedia.org/wiki/%D0%A2%D1%80%D0%B0%D0%BD%D1%81%D1%86%D0%B5%D0%BD%D0%B4%D0%B5%D0%BD%D1%82%D0%BD%D1%8B%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%B0>%20(%d0%b4%d0%be%d0%ba%d0%b0%d0%b7%d0%b0%d0%b2%20%d0%bf%d1%80%d0%b8%20%d1%8d%d1%82%d0%be%d0%bc%20%d1%81%d1%83%d1%89%d0%b5%d1%81%d1%82%d0%b2%d0%be%d0%b2%d0%b0%d0%bd%d0%b8%d0%b5%20%d1%82%d1%80%d0%b0%d0%bd%d1%81%d1%86%d0%b5%d0%bd%d0%b4%d0%b5%d0%bd%d1%82%d0%bd%d1%8b%d1%85%20%d1%87%d0%b8%d1%81%d0%b5%d0%bb),%20%d1%82%d0%b5%d0%bc%20%d1%81%d0%b0%d0%bc%d1%8b%d0%bc%20%d0%bf%d0%b5%d1%80%d0%b5%d0%be%d1%81%d0%bc%d1%8b%d1%81%d0%bb%d0%b8%d0%b2%20%d1%80%d0%b0%d0%b1%d0%be%d1%82%d1%8b%20%d0%95%d0%b2%d0%ba%d0%bb%d0%b8%d0%b4%d0%b0%20%d0%bf%d0%be%20%d0%ba%d0%bb%d0%b0%d1%81%d1%81%d0%b8%d1%84%d0%b8%d0%ba%d0%b0%d1%86%d0%b8%d0%b8%20%d0%b8%d1%80%d1%80%d0%b0%d1%86%d0%b8%d0%be%d0%bd%d0%b0%d0%bb%d1%8c%d0%bd%d1%8b%d1%85%20%d1%87%d0%b8%d1%81%d0%b5%d0%bb.%20%d0%9f%d0%be%20%d1%8d%d1%82%d0%be%d0%b9%20%d1%82%d0%b5%d0%bc%d0%b5%20%d0%b2%201872%20%d0%b1%d1%8b%d0%bb%d0%b8%20%d0%be%d0%bf%d1%83%d0%b1%d0%bb%d0%b8%d0%ba%d0%be%d0%b2%d0%b0%d0%bd%d1%8b%20%d1%80%d0%b0%d0%b1%d0%be%d1%82%d1%8b%20%d0%92%d0%b5%d0%b9%d0%b5%d1%80%d1%88%d1%82%d1%80%d0%b0%d1%81%d1%81%d0%b0%20<http://ru.wikipedia.org/wiki/%D0%92%D0%B5%D0%B9%D0%B5%D1%80%D1%88%D1%82%D1%80%D0%B0%D1%81%D1%81,_%D0%9A%D0%B0%D1%80%D0%BB>,%20%d0%93%d0%b5%d0%b9%d0%bd%d0%b5%20<http://ru.wikipedia.org/wiki/%D0%93%D0%B5%D0%B9%D0%BD%D0%B5,_%D0%AD%D0%B4%D1%83%D0%B0%D1%80%D0%B4>,%20%d0%9a%d0%b0%d0%bd%d1%82%d0%be%d1%80%d0%b0%20<http://ru.wikipedia.org/wiki/%D0%9A%D0%B0%D0%BD%D1%82%D0%BE%D1%80,_%D0%93%D0%B5%D0%BE%D1%80%D0%B3_%D0%A4%D0%B5%D1%80%D0%B4%D0%B8%D0%BD%D0%B0%D0%BD%D0%B4_%D0%9B%D1%8E%D0%B4%D0%B2%D0%B8%D0%B3_%D0%A4%D0%B8%D0%BB%D0%B8%D0%BF%D0%BF>%20%d0%b8%20%d0%94%d0%b5%d0%b4%d0%b5%d0%ba%d0%b8%d0%bd%d0%b4%d0%b0%20<http://ru.wikipedia.org/wiki/%D0%94%D0%B5%D0%B4%D0%B5%D0%BA%D0%B8%D0%BD%D0%B4,_%D0%AE%D0%BB%D0%B8%D1%83%D1%81_%D0%92%D0%B8%D0%BB%D1%8C%D0%B3%D0%B5%D0%BB%D1%8C%D0%BC_%D0%A0%D0%B8%D1%85%D0%B0%D1%80%D0%B4>.%20%d0%a5%d0%be%d1%82%d1%8f%20%d0%b5%d1%89%d1%91%20%d0%b2%201869%20%d0%b3%d0%be%d0%b4%d1%83%20%d0%9c%d0%b5%d1%80%d1%8d%20<http://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D1%80%D1%8D,_%D0%A8%D0%B0%D1%80%D0%BB%D1%8C>%20%d0%bd%d0%b0%d1%87%d0%b0%d0%bb%20%d1%80%d0%b0%d1%81%d1%81%d0%bc%d0%be%d1%82%d1%80%d0%b5%d0%bd%d0%b8%d1%8f,%20%d1%81%d1%85%d0%be%d0%b6%d0%b8%d0%b5%20%d1%81%20%d0%93%d0%b5%d0%b9%d0%bd%d0%b5,%20%d0%b8%d0%bc%d0%b5%d0%bd%d0%bd%d0%be%201872%20%d0%b3%d0%be%d0%b4%20%d0%bf%d1%80%d0%b8%d0%bd%d1%8f%d1%82%d0%be%20%d1%81%d1%87%d0%b8%d1%82%d0%b0%d1%82%d1%8c%20%d0%b3%d0%be%d0%b4%d0%be%d0%bc%20%d1%80%d0%be%d0%b6%d0%b4%d0%b5%d0%bd%d0%b8%d1%8f%20%d1%82%d0%b5%d0%be%d1%80%d0%b8%d0%b8.%20%d0%92%d0%b5%d0%b9%d0%b5%d1%80%d1%88%d1%82%d1%80%d0%b0%d1%81%d1%81,%20%d0%9a%d0%b0%d0%bd%d1%82%d0%be%d1%80%20%d0%b8%20%d0%93%d0%b5%d0%b9%d0%bd%d0%b5%20%d0%be%d0%b1%d0%be%d1%81%d0%bd%d0%be%d0%b2%d1%8b%d0%b2%d0%b0%d0%bb%d0%b8%20%d1%81%d0%b2%d0%be%d0%b8%20%d1%82%d0%b5%d0%be%d1%80%d0%b8%d0%b8%20%d0%bf%d1%80%d0%b8%20%d0%bf%d0%be%d0%bc%d0%be%d1%89%d0%b8%20%d0%b1%d0%b5%d1%81%d0%ba%d0%be%d0%bd%d0%b5%d1%87%d0%bd%d1%8b%d1%85%20%d1%80%d1%8f%d0%b4%d0%be%d0%b2,%20%d0%b2%20%d1%82%d0%be%20%d0%b2%d1%80%d0%b5%d0%bc%d1%8f%20%d0%ba%d0%b0%d0%ba%20%d0%94%d0%b5%d0%b4%d0%b5%d0%ba%d0%b8%d0%bd%d0%b4%20%d1%80%d0%b0%d0%b1%d0%be%d1%82%d0%b0%d0%bb%20%d1%81%20(%d0%bd%d1%8b%d0%bd%d0%b5%20%d1%82%d0%b0%d0%ba%20%d0%bd%d0%b0%d0%b7%d1%8b%d0%b2%d0%b0%d0%b5%d0%bc%d1%8b%d0%bc)%20%d0%94%d0%b5%d0%b4%d0%b5%d0%ba%d0%b8%d0%bd%d0%b4%d0%be%d0%b2%d1%8b%d0%bc%20%d1%81%d0%b5%d1%87%d0%b5%d0%bd%d0%b8%d0%b5%d0%bc%20<http://ru.wikipedia.org/wiki/%D0%94%D0%B5%D0%B4%D0%B5%D0%BA%D0%B8%D0%BD%D0%B4%D0%BE%D0%B2%D0%BE_%D1%81%D0%B5%D1%87%D0%B5%D0%BD%D0%B8%D0%B5>%20%d0%bc%d0%bd%d0%be%d0%b6%d0%b5%d1%81%d1%82%d0%b2%d0%b0%20%d0%b2%d0%b5%d1%89%d0%b5%d1%81%d1%82%d0%b2%d0%b5%d0%bd%d0%bd%d1%8b%d1%85%20%d1%87%d0%b8%d1%81%d0%b5%d0%bb,%20%d1%80%d0%b0%d0%b7%d0%b4%d0%b5%d0%bb%d1%8f%d1%8f%20%d0%b2%d1%81%d0%b5%20%d1%80%d0%b0%d1%86%d0%b8%d0%be%d0%bd%d0%b0%d0%bb%d1%8c%d0%bd%d1%8b%d0%b5%20%d1%87%d0%b8%d1%81%d0%bb%d0%b0%20%d0%bd%d0%b0%20%d0%b4%d0%b2%d0%b0%20%d0%bc%d0%bd%d0%be%d0%b6%d0%b5%d1%81%d1%82%d0%b2%d0%b0%20%d1%81%20%d0%be%d0%bf%d1%80%d0%b5%d0%b4%d0%b5%d0%bb%d1%91%d0%bd%d0%bd%d1%8b%d0%bc%d0%b8%20%d1%85%d0%b0%d1%80%d0%b0%d0%ba%d1%82%d0%b5%d1%80%d0%b8%d1%81%d1%82%d0%b8%d1%87%d0%b5%d1%81%d0%ba%d0%b8%d0%bc%d0%b8%20%d1%81%d0%b2%d0%be%d0%b9%d1%81%d1%82%d0%b2%d0%b0%d0%bc%d0%b8.%20%d0%ad%d1%82%d0%be%20%d1%80%d0%b0%d0%b7%d0%b4%d0%b5%d0%bb%d0%b5%d0%bd%d0%b8%d0%b5%20%d0%bc%d1%8b%20%d0%b8%20%d0%b1%d1%83%d0%b4%d0%b5%d0%bc%20%d1%81%d0%b5%d0%b9%d1%87%d0%b0%d1%81%20%d1%80%d0%b0%d1%81%d1%81%d0%bc%d0%b0%d1%82%d1%80%d0%b8%d0%b2%d0%b0%d1%82%d1%8c.">В XVII веке в математике прочно укрепились комплексные числа, вклад в изучение которых внесли Абрахам де Муавр <http://ru.wikipedia.org/wiki/%D0%9C%D1%83%D0%B0%D0%B2%D1%80,_%D0%90%D0%B1%D1%80%D0%B0%D1%85%D0%B0%D0%BC_%D0%B4%D0%B5> (1667-1754) и Леонард Эйлер <http://ru.wikipedia.org/wiki/%D0%AD%D0%B9%D0%BB%D0%B5%D1%80,_%D0%9B%D0%B5%D0%BE%D0%BD%D0%B0%D1%80%D0%B4> (1707-1783). Когда теория комплексных чисел в XIX веке стала замкнутой и чёткой, стало возможным классифицировать иррациональные числа на алгебраические <http://ru.wikipedia.org/wiki/%D0%90%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%B0> и трансцендентные <http://ru.wikipedia.org/wiki/%D0%A2%D1%80%D0%B0%D0%BD%D1%81%D1%86%D0%B5%D0%BD%D0%B4%D0%B5%D0%BD%D1%82%D0%BD%D1%8B%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%B0> (доказав при этом существование трансцендентных чисел), тем самым переосмыслив работы Евклида по классификации иррациональных чисел. По этой теме в 1872 были опубликованы работы Вейерштрасса <http://ru.wikipedia.org/wiki/%D0%92%D0%B5%D0%B9%D0%B5%D1%80%D1%88%D1%82%D1%80%D0%B0%D1%81%D1%81,_%D0%9A%D0%B0%D1%80%D0%BB>, Гейне <http://ru.wikipedia.org/wiki/%D0%93%D0%B5%D0%B9%D0%BD%D0%B5,_%D0%AD%D0%B4%D1%83%D0%B0%D1%80%D0%B4>, Кантора <http://ru.wikipedia.org/wiki/%D0%9A%D0%B0%D0%BD%D1%82%D0%BE%D1%80,_%D0%93%D0%B5%D0%BE%D1%80%D0%B3_%D0%A4%D0%B5%D1%80%D0%B4%D0%B8%D0%BD%D0%B0%D0%BD%D0%B4_%D0%9B%D1%8E%D0%B4%D0%B2%D0%B8%D0%B3_%D0%A4%D0%B8%D0%BB%D0%B8%D0%BF%D0%BF> и Дедекинда <http://ru.wikipedia.org/wiki/%D0%94%D0%B5%D0%B4%D0%B5%D0%BA%D0%B8%D0%BD%D0%B4,_%D0%AE%D0%BB%D0%B8%D1%83%D1%81_%D0%92%D0%B8%D0%BB%D1%8C%D0%B3%D0%B5%D0%BB%D1%8C%D0%BC_%D0%A0%D0%B8%D1%85%D0%B0%D1%80%D0%B4>. Хотя ещё в 1869 году Мерэ <http://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D1%80%D1%8D,_%D0%A8%D0%B0%D1%80%D0%BB%D1%8C> начал рассмотрения, схожие с Гейне, именно 1872 год принято считать годом рождения теории. Вейерштрасс, Кантор и Гейне обосновывали свои теории при помощи бесконечных рядов, в то время как Дедекинд работал с (ныне так называемым) Дедекиндовым сечением <http://ru.wikipedia.org/wiki/%D0%94%D0%B5%D0%B4%D0%B5%D0%BA%D0%B8%D0%BD%D0%B4%D0%BE%D0%B2%D0%BE_%D1%81%D0%B5%D1%87%D0%B5%D0%BD%D0%B8%D0%B5> множества вещественных чисел, разделяя все рациональные числа на два множества с определёнными характеристическими свойствами. Это разделение мы и будем сейчас рассматривать.

  • 1145. Непрерывные генетические алгоритмы
    Курсовой проект пополнение в коллекции 12.01.2009

    Эффективность генетических алгоритмов с двоичным кодированием в этом случае будет невысокой. На первых итерациях алгоритм потратит много усилий на оценку младших разрядов числа, закодированных во фрагменте двоичной хромосомы. Но оптимальное значение на первых итерациях будет зависеть от старших разрядов числа. Следовательно, пока в процессе эволюции алгоритм не выйдет на значение старшего разряда в окрестности оптимума, операции с младшими разрядами окажутся бесполезными. С другой стороны, когда это произойдет, станут не нужны операции со старшими разрядами необходимо улучшать точность решения поиском в младших разрядах. Такое «идеальное» поведение не обеспечивает семейство генетических алгоритмов с двоичным кодированием, т.к. эти алгоритмы оперируют битовой строкой целиком, и на первых же эпохах младшие разряды чисел "застывают", принимая случайное значение. В классических генетических алгоритмах разработаны специальные приемы по выходу из этой ситуации. Например, последовательный запуск ансамбля генетических алгоритмов с постепенным сужением пространства поиска.

  • 1146. Неразрешимость логики первого порядка
    Курсовой проект пополнение в коллекции 23.02.2011

    Вообще, говорят, что проблема распознавания какого-либо свойства разрешима, если существует допускающий механическое вычисление тест (вычислимая, или эффективная, процедура), который, будучи применен к произвольному объекту соответствующего типа, по прошествии некоторого времени правильно классифицирует этот объект с точки зрения наличия или отсутствия у него некоторого свойства. (Слова «по прошествии некоторого времени» означают здесь «после некоторого конечного числа шагов».) Позитивным тестом называется эффективная процедура, устанавливающая по прошествии некоторого времени все случаи наличия соответствующего свойства и только их. Негативный тест это эффективная процедура, обнаруживающая все случаи отсутствия свойства и только их. Проблема распознавания произвольного свойства разрешима тогда и только тогда, когда для него существует и позитивный, и негативный тесты; дело в том, что всякий объект может или обладать рассматриваемым свойством, или нет, и потому, обладая обоими тестами, можно применить их оба к интересующему объекту, выполняя поочередно шаги одного и другого, и после некоторого их количества обнаружить, обладает он этим свойством или нет. (Верно и обратное: всякий тест, устанавливающий через некоторое конечное число шагов, обладает данный объект рассматриваемым свойством или нет, реализует и позитивный, и негативный тесты для этого свойства) Нас будут интересовать сейчас свойства общезначимости и выполнимости, а в роли объектов «соответствующего типа» выступают формулы языка логики первого порядка.

  • 1147. Несколько способов решения одной геометрической задачи
    Контрольная работа пополнение в коллекции 09.12.2008

    В своей работе я рассмотрел различные способы решений одной геометрической задачи, используя известные методы. Анализируя все решения, я сделал для себя важные выводы. Во-первых, благодаря такой работе снимается психологический барьер перед поиском решения задачи. Ведь если знаешь, что задача имеет несколько способов решения, то смелее берешься за неё. Постепенно, решая задачу за задачей, приобретаешь некоторый опыт, что позволит развить математическое чутье. Во-вторых, подробный разбор способов решения задач является хорошим подспорьем для того, чтобы освежить в памяти пройденный материал. В-третьих, при такой работе над задачей формируется логическое мышление, развивается интуиция, систематизируются знания, расширяется общеобразовательный кругозор. В-четвертых, овладевая основными методами решения задач, составляющими важную часть многих эвристических алгоритмов, можно рационально планировать поиск решения задачи, выполнять полезные преобразования условия задачи, а также использовать известные приемы познавательной деятельности наблюдение, сравнение, обобщение.

  • 1148. Несостоятельность специальной теории относительности Эйнштейна
    Статья пополнение в коллекции 12.01.2009

    И хотя статья касается только логических ошибок, совершенных Эйнштейном при разработке СТО, но все же здесь необходимо сделать несколько замечаний касательно физического принципа относительности, как краеугольного камня всей теории. Эвристическая ценность принципа заключается в удобстве пользования законами физики, форма записи которых постулируется неизменной для всех инерциальных систем отсчёта. Тогда как его физическая суть опирается на утверждение о невозможности обнаружения абсолютного движения, подкреплённого, во время написания СТО, опытом Майкельсона. И хотя другие оптические явления, такие как: аберрация света, опыт Физо, явление Доплера, явление Саньяка, дипольная анизотропия реликтового излучения и многие другие, говорили об обратном, но тезис простоты природы, подхваченный математической физикой и скрепленный с обобщённым понятием симметрии, сделал своё дело. Принцип стал главенствующим в математических исследованиях закономерностей природы. Причём, превалирование математического феноменализма над экспериментом приняло столь угрожающий характер, что не только априорно принятым постулатам, чаще всего носящим характер математических универсалий, но и соотношениям, выведенным из их с помощью математической логики, которые, по своей сути, всё же являлись искусственными объектами интеллекта, безапелляционно приписывался ранг реальности. Более того, в физику сейчас вводятся так называемые “ненаблюдаемые физические величины”, но всё же играющие решающую роль в объяснении внутренних причин наблюдаемых явлений. Неадекватность постулатов свойствам природы и логические ошибки или половинчатость (незаконченность) рассуждений, как правило, приводят к несостоятельности разрабатываемых феноменологических теорий, находящихся далеко в стороне от реалий объективного мира природы. СТО как раз и является ярким примером сказанному. В ней, как было показано выше, нарушена не только логика построения, связанная с несовместностью принципов, заложенных в её основы, но и не обоснована их физическая реальность. И если принцип постоянства скорости света действительно был нов, что, однако, требовало его скрупулёзного обоснования, а не только подспудного желания сохранения ковариантного вида уравнения “шаровой волны” (что, к стати, невозможно было бы осуществить без него), то всестороннее исследование его совместности с принципом относительности, уже укоренившимся в физике положением, было просто необходимо и не привело бы к несостоятельности теории в целом. Однако и сам принцип относительности даёт трещины в своей состоятельности, вызванные не только анализом наблюдений окружающей действительности, но и со стороны формальной логики математического описания явлений. Действительно, если ранее внутренние механизмы гелио и геофизических явлений искали во взаимодействии элементов, составляющих эти системы, то теперь они находят простое объяснение в анизотропии окружающего пространства, вызванного абсолютным движением Земли (7). К ним относятся: сезонность в числе землетрясений и скорости вращения планеты; периодизм движения полюсов и скорости вращения атмосферы планеты; особенности вулканической активности и климата планеты и др. Такое объяснение стало возможным после того, как обнаружили, что перечисленные геофизические процессы более активно протекают только в определённых точках орбиты планеты, то есть пространство не изотропно. Выявленное несоответствие принципа относительности и закона сохранения энергии-импульса, как математического феномена, существующее даже при нерелятивистских скоростях, объясняет особенности строения Солнечной системы, ранее ускользавшие из поля зрения физиков (это движение планет по эллиптическим, а не круговым орбитам; нахождение Солнца в одном и том же фокусе для орбит всех планет; аналогичные особенности движения комет и астероидов). Следует отметить ещё одно важное обстоятельство. Формально целью разработки СТО для Эйнштейна явилась асимметрия электромагнитных явлений, описываемых разными законами, и связанная с необходимостью различать движение магнита или проводника, находящихся в одной и той же системе отсчёта. Решение этой проблемы средствами математической физики привело к выработке физических понятий магнитных и электрических полей, лишенных какой-либо структуры, которые могут только изменяться, но не перемещаться в пространстве как материальные тела. Хотя к тому времени уже были известны эксперименты, объяснение которых требовало наличия определённой структуры у этих полей и введения понятия их пространственных перемещений. Иными словами уравнения Максвелла уже тогда не отражали всех реальных свойств электромагнитного поля. К проблемным опытам того времени относятся: униполярная индукция Фарадея, опыт Геринга, эффект Бъю-Ли и др., которых старались не замечать и считать физическими артефактами. И только явление электродинамического взаимодействия электрических токов проводимости с электромагнитной волной, обнаруженное в 70 годах прошлого века, заставило по иному взглянуть на проблему взаимоотношения полей с пространством. Это явление совершенно по другому высветило вопрос о природе инертной массы вещества, что только и могло объяснить феноменологию несоответствия принципа относительности и закона сохранения энергии-импульса (8). Кроме того, оно давало в руки исследователей реальный механизм (физическое явление) взаимодействия с самим пустым пространством. При реализации которого, космическое пространство (физический вакуум) это была уже не пустота сосуда, а материальное тело, с которым можно было связывать не только глобальную систему отсчёта, но и физически взаимодействовать, с целью получения движения в пустоте или преобразования энергии движения космических тел в энергию электрического тока. В свете сказанного совершенно иную интерпретацию получают другие известные эксперименты, объяснение которых требовало привлечения физических свойств вакуума и связанной с ними абсолютной системой отсчёта, таких как: дипольная анизотропия реликтового излучения (9); так называемый Новый опыт Майкельсона, основанный на эффекте Саньяка и осуществленный в 1925г (10); опыт Стефана Маринова и многие другие (11). Так эффект Глушко Михельсона, связанный с преобразованием частоты электромагнитной волны, вследствие изменения свойств среды распространения волнового процесса, применённый для объяснения явления межгалактического красного смещения спектральных линий удалённых галактик, не только прямо указывал на наличие физических свойств у пустого космического пространства, без материальности которого явление принципиально не может произойти, но и даёт возможность определить физическую суть другого фундаментального понятия времени, переведя его в ранг абсолютных величин, при которой начало отсчёта времени не может быть произвольной величиной (12).

  • 1149. Несостоятельность теории электромагнетизма
    Информация пополнение в коллекции 12.01.2009

    Т. е., вихревая составляющая (rotP) электрической напряженности E есть ничто иное, как частная производная по времени от векторного потенциала A магнитного поля, взятого с обратным знаком, имеющего строго вихревой характер. Рассмотрим основания, приведшие Максвелла к утверждению о том, что изменяющееся во времени магнитное поле возбуждает в окружающем пространстве вихревое электрическое поле. Как известно, основанием для изложенного утверждения послужило появление электрического тока в цепи вторичной обмотки катушки индуктивности при протекании переменного во времени тока в первичной катушке, что наблюдалось в хорошо известных опытах Фарадея. Но, т.к. вторичная обмотка катушки индуктивности была расположена таким образом, что она не контактировала непосредственно с полем магнитной индукции В первичной катушки и, как бы, охватывала область пространства, содержащую его, а из закона Ома уже было известно, что ток в проводнике возникает под действием электрической напряженности E , то и был сделан вывод о возбуждении электрического вихревого поля E в пространстве, окружающем изменяющееся во времени поле магнитной индукции B. Сам по себе, данный вывод парадоксален уже потому, что, как известно, закон Ома выполняется только во вторичной цепи и не выполняется внутри источника Э.Д.С., т.к. в н¬м ток течет навстречу напряженности электрического поля, в результате действия внешних вызывающих сил неэлектрической природы, а вторичная обмотка катушки индуктивности (в указанном эксперименте) выступает в роли источника Э.Д.С. Тем не менее, получить расчетным путем значение Э.Д.С. индукции во вторичной обмотке катушки индуктивности не удалось без введения нового поля . поля векторного потенциала A, причем, как было показано раньше, результат расчета Э.Д.С. индукции в точности совпадал с измеренной величиной, при условии, что напряженность электрического поля строго равнялась нулю. Т. е., введение понятия "вихревое электрическое поле" ничего не дало для расчетного получения значения Э.Д.С. индукции, но породило парадокс, суть которого была изложена ранее. Из опыта работы с электрическими полями заряженных тел было известно, что на металлических предметах, помещенных в электрическое поле, Э.Д.С. не возникает в следствие высокой поляризационной способности металлов, обусловленной большим количество свободных носителей электрических зарядов в них. И, наоборот, если мы хотим получить Э.Д.С. на металлических предметах, то мы должны воздействовать на них некоторой силой неэлектрической природы, например: механической, тепловой, химической и т. д., под действием которой происходит разведение электрических зарядов внутри проводника, что и вызывает возникновение в н¬м электрической напряженности E как силы, противодействующей дальнейшему разведению электрических зарядов. Равенство внешних сил неэлектрической природы, воздействующих на электрические заряды в проводнике, и электрических внутренних противодействующих сил в н¬м и есть условие равновесия. Интеграл от напряженности электрического поля E внутри проводника, взятой с обратным знаком (т.к. E = . gradj), по длине проводника является искомой Э.Д.С. Но, тогда, наличие Э.Д.С. на зажимах вторичной обмотки катушки индуктивности (при протекании электрического переменного во времени тока в первичной катушке) является необходимым и достаточным условием для утверждения того, что на электрические заряды в проводнике вторичной обмотки катушки при протекании электрического переменного тока в первичной обмотке действует сила неэлектрической природы. Если учесть, что электрическая напряженность по определению есть сила, действующая на единичный электрический заряд, то, с учетом ранее изложенных рассуждений, приходим к выводу, что на покоящийся электрический заряд, помещенный в переменное во времени магнитное поле, действует сила со стороны магнитного поля, равная скорости изменения во времени вектора - потенциала A магнитного поля, умноженной на величину электрического заряда, взятого с обратным знаком. Или:

  • 1150. Нестабильность тонких пленок под действием внешних сил
    Информация пополнение в коллекции 12.01.2009

    При небольшом отклонении жидкости от равновесия обычно существуют два класса сил (Рис.2): силы, которые стараются вернуть жидкость обратно в положение равновесия (стабилизирующие силы), и силы, пытающиеся увести систему как можно дальше от положения равновесия (дестабилизирующие силы). В нашем случае к первому классу сил относится сила поверхностного натяжения. Эта сила старается минимизировать поверхность раздела двух жидкостей, выпрямить ее (Рис.2а). Ко второму классу относится сила тяжести: Земля притягивает тяжелую жидкость сильнее, и потому усиливает отклонения (Рис.2б). Итак, мы видим, что динамика жидкости в данном примере определяется противоборством двух конкурирующих сил. Важно еще и то, что обе эти силы одинаковым образом (линейно) зависят от величины отклонения. Поэтому оказывается, что та сила, которая "перевешивает" при небольшом отклонении, будет перевешивать и при любом другом отклонении. То есть, если возвращающая сила оказывается больше, все случайные отклонения от положения равновесия будут "гаситься", а значит, равновесие сохранится. Если же поверхностное натяжение не столь сильно, то преобладать будет сила тяжести, а значит, любое, даже самое маленькое возмущение будет быстро усиливаться, пока, наконец, не перерастет в течение, охватывающее всю систему. Именно такая ситуация и называется неустойчивостью Рэлея-Тэйлора.

  • 1151. Нестандартные методы решения задач по математике
    Курсовой проект пополнение в коллекции 21.02.2010

    Применение нестандартных методов решения задач по математике требует от старшеклассников и абитуриентов нетрадиционного мышления, необычных рассуждений. Незнание и непонимание таких методов существенно уменьшает область успешно решаемых задач по математике. Тем более, что имеющая место тенденция к усложнению конкурсных заданий по математике стимулирует появление новых оригинальных (нестандартных) подходов к решению математических задач. Следует отметить, что знание нестандартных методов и приемов решения задач по математике способствует развитию у старшеклассников нового, нешаблонного мышления, которое можно успешно применять также и в других сферах человеческой деятельности (кибернетика, вычислительная техника, экономика, радиофизика, химия и т.д.).

  • 1152. Нестандартные методы решения математических задач
    Реферат пополнение в коллекции 15.08.2010
  • 1153. Нестандартные методы решения тригонометрических уравнений: графический и функциональный
    Контрольная работа пополнение в коллекции 09.12.2008

    Не всякое уравнение вида f(x)=g(x) в результате преобразований может быть приведено к уравнению того или иного стандартного вида, для которого подходят обычные методы решения. В таких случаях имеет смысл использовать такие свойства функций f(x) и g(x) как монотонность, ограниченность, четность, периодичность и др. Так, если одна из функций возрастает, а другая убывает на определенном промежутке, то уравнение f(x) = g(x) не может иметь более одного корня, который, в принципе, можно найти подбором. Далее, если функция f(x) ограничена сверху, а функция g(x) снизу так, что f(x)мах=А g(x)мin=A, то уравнение f(x)=g(x) равносильно системе уравнений

  • 1154. Нестандартные методы решения уравнений и неравенств
    Курсовой проект пополнение в коллекции 09.09.2010

     

    1. Абылкасымова А. Е. «Алгебра 10 класс», Мектеп, 2006 г.
    2. Алилов М. А., Колягин Ю. М. и др. «Алгебра и начала анализа». Пробный учебник для 10-11 кл. средней школы. М.: «Просвещение», 2002 г.
    3. Болтянский В. Г., Сидоров Ю. В., Шабунин М. И. «Лекции и задачи по элементарной математике», М.: Изд. «Наука», 1974 г.
    4. Газета «Математика» №20, 2008 г.
    5. Голубев В. И. «Решение сложных и нестандартных задач по математике», 1995 г.
    6. Горштейн П. И. «Задачи с параметрами», М. «Илекса», 1999 г.
    7. Гусев В. А., Мордович А. Г. «Математика. Справочные материалы» Книга для учащихся М.: «Просвещение», 1990 г.
    8. Далингер В. А. «Нестандартные уравнения и методы их решения», Омск, 1995 г.
    9. Жафяров А. Ж. «Профильное обучение старшеклассников», 2001 г.
    10. Журнал «Математика в школе», 1999-2007 г.
    11. Ивлев Б. М., Абрамов А. М., Дудницын Ю. П., Швардцбурд С. И. «Задачи повышенной трудности по алгебре и началам анализа», М: «Просвещение», 1990 г.
    12. Ковалева Г. И., Конкина Е. В. «Функциональный метод решения уравнений и неравенств», 2008 г.
    13. Кравцев С. В. «Методы решения задач по алгебре», М. «Оникс», 2001г.
    14. Кулагин Е. Д. «300 конкурсных задач по математике», 2003 г.
    15. Кушнир А. И. «Математическая энциклопедия», Киев «Астарта», 1995 г.
    16. Литвиненко В. Н., Мордкович А. Г. «Практикум по элементарной математике. Алгебра. Тригонометрия», 1991 г.
    17. Мордкович А. Г. «Алгебра и начала анализа», М.: Высшая школа, 1995 г.
    18. Олехник С. Н., Потапов М. К., Пасиченко П. И. «Нестандартные методы решения», 1992 г.
    19. Письменский Д. Т. «Математика для старшеклассников». Издательство, «Айрис». М., 1996 г.
    20. Постникова, С. Я. «Уравнения с параметрами на факультативных занятиях», 2002 г.
    21. Потапов М. К. «Уравнения и неравенства. Нестандартные методы решения» М. «Дрофа», 2002 г.
    22. С. А. Барвенов «Методы решения алгебраических уравнений», М. «Аверсэв», 2006 г.
    23. Сканави М. И. «Сборник задач для поступающих в ВУЗы», М. «Высшая школа», 1988г.
    24. Супрун В. П. «Нестандартные методы решения задач по математике» Минск «Полымя», 2000 г.
    25. Теляковский С. Л. «Алгебра». Учебник для 9 кл. общественных учреждений. М.: «Просвещение», 1995 г.
    26. Фридман Л. М., Турецкий Е. Н. «Как научиться решать задачи» Книга для учащихся старших классов средней школы. М.: «Просвещение», 1987 г.
    27. Шабунин. М. И. «Пособие по математике для поступающих в вузы», 2005г.
    28. Шыныбеков А. Н. «Алгебра 10 класс», Атамура, 2006 г.
  • 1155. Нестандартный анализ
    Курсовой проект пополнение в коллекции 14.09.2006

    Изложим историко-математические взгляды Робинсона. Робинсон резюмирует стандартный взгляд на историю развития математического анализа в следующих словах: “После длительного периода, в течение которого были определены площади, объемы и касательные в различных частных случаях, во второй половине семнадцатого столетия Ньютоном и (несколько позже, но независимо) Лейбницем была построена общая теория дифференцирования и интегрирования. Касаясь обоснования введенных им понятий, Ньютон обращался то к бесконечно малым, то к пределам, то непосредственно к физической интуиции; его непосредственные последователи предпочитали последнее. С другой стороны, Лейбниц и его последователи развивали теорию исходя из дифференциалов первого и следующих порядков. Технические удобства обозначений, использовавших дифференциалы, привели к быстрому развитию Анализа и его приложений в Европе, где они были приняты. Однако внутренние противоречия этой концепции привели к осознанию того, что необходимы какие-то другие основания. Лагранж считал, что ему удалось найти подходящий путь, взяв за основу тейлоровское разложение функции. Но первое строгое обоснование математического анализа было дано лишь Коши. Основой теории Коши было понятие предела, которое, будучи впервые выдвинуто Ньютоном, впоследствии поддерживалось Даламбером. Более формальное изложение методов Коши было дано Вейерштрассом (которого в некоторой степени предвосхитил Больцано). После создания теория пределов использование бесконечно больших и бесконечно малых превратилось в оборот речи, применяемый в выражениях типа “... стремится к бесконечности”. Дальнейшее развитие теории неархимедовых полей было целиком предоставлено алгебре.”

  • 1156. Нестандартный анализ
    Информация пополнение в коллекции 09.12.2008
  • 1157. Нефизические причины кризиса фундаментальной физики
    Статья пополнение в коллекции 12.01.2009

    Первая они чувствуют, что произнеся это, они будут обязаны выйти из укрытия своего научного авторитета и предстать перед внимающими как обычные аналитики, с равными с оппонентами правами и также подверженными суду наблюдателями. Но именно в логике они чувствуют себя наиболее уязвимыми, незащищёнными, неумелыми. Следуя логике, нужно будет или идти до конца, порою принимая выводы, прямо противоположные ими отстаиваемым, или выкручиваться, используя хорошо заметные со стороны декларативные или демагогические приёмы. Именно здесь заслуги ничего не значат, а значат лишь аналитические способности. Именно за это был так любим народом и ненавидим власть имущими Сократ. Он заставлял своих оппонентов сбрасывать маски ханжества и признавать, что они так же мало знают о природе вещей, как и другие. При этом Сократ не был силён в математике, знания каковой для некоторых почему-то является единственным признаком способности приходить к правильным выводам. Утверждение, что не знающий математику (высшую, разумеется) не может создать ничего стоящего в физике, в корне неправомерно. Разумеется, хорошее знание математики является показателем развитого интеллекта и наличия богатого инструментария, но не более того. Математика не заменяет творческое начало и интуицию, а лишь дополняет их. Вспомните Зельдовича, который так и не получил высшего образования, что не помешало ему стать академиком.

  • 1158. Нечетко-логические модели и алгоритмы
    Информация пополнение в коллекции 12.01.2009

    Коротко перечислим отличительные преимущества fuzzy-систем по сравнению с прочими :

    • возможность оперировать входными данными, заданными нечетко: например, непрерывно изменяющиеся во времени значения (динамические задачи), значения, которые невозможно задать однозначно (результаты статистических опросов, рекламные компании и т.д.);
    • возможность нечеткой формализации критериев оценки и сравнения: оперирование критериями "большинство", "возможно", предпочтительно" и т.д.;
    • возможность проведения качественных оценок как входных данных, так и выводимых результатов: вы оперируете не только собственно значениями данных, но их степенью достоверности (не путать с вероятностью!) и ее распределением;
    • возможность проведения быстрого моделирования сложных динамических систем и их сравнительный анализ с заданной степенью точности: оперируя принципами поведения системы, описанными fuzzy-методами, вы во-первых, не тратите много времени на выяснение точных значений переменных и составление уравнений, которые их описывают, во-вторых, можете оценить разные варианты выходных значений.
  • 1159. Николай Бурбаки – математический феномен 20 века
    Статья пополнение в коллекции 15.03.2011

    Истинное авторство великого трактата долгое время оставалось неизвестным. Ходили самые противоречивые слухи и догадки. Рождались мистификации. Николай Бурбаки ревностно защищал свое право на единую биографию и паспорт. Однако такой выдающийся автор не мог скрываться до «бесконечности». Вскоре после войны начали просачиваться сведения, что Бурбаки не одно лицо, а целая группа молодых (в тридцатых годах) французских математиков во главе с Вейлем, Дьёдонне и Картаном. Имена их были впервые упомянуты Андре Деляше в 1949 году. Согласно существующей версии «Элементы математики» родились из ожесточенного спора между Вейлем и Жаном Дельсартом о том, как следует преподавать математический анализ. Постепенно собралась активная группа, работавшая настолько дружно и тесно, что решили не писать многих отдельных фамилий, а найти псевдоним. То, что многие из участников принадлежали к нансийской школе и обладали незаурядным чувством юмора, сделало бессмертным имя неудачника генерала. Шутка разрасталась. Во время войны большая часть руководителей группы оказалась в США и обосновалась в Чикагском университете. Поэтому некоторые работы Бурбаки и даже его участников начали выходить с памяткой «Труды математического института университета Нанкаго» (Нанси + Чикаго). [Ещё один вариант происхождения Бурбаки я вычитал у Сандерса Маклейна в его рецензии на книгу «André Weil: The apprenticeship of mathematician», опубликованную в «Бюллетене Американского математического общества»: We all heard the legend: Cartan, Chevalley, Delsarte, Dieudonné, and Weil (The Founding members) visited Montmartre to find a bearded clochard muttering in his absinthe insights about compact structures and their representations. They then sat at his feet, learned all about it, and polished it up in elegant form. My files once had a splendid photo of that clochard, Nicholas Bourbaki, white beard and all. К сожалению, у меня этого фото нет. Поиски в Инете тоже ничего не дали. E.G.A.]

  • 1160. Николай Иванович Лобачевский (1792 - 1856)
    Информация пополнение в коллекции 09.12.2008

    Семь лет этой церковно-полицейской системы принесли Лобачевскому тяжелые испытания, но не сломили его непокорный дух. Выдержать этот гнет ему помогла только его обширная и многообразная педагогическая, административная и исследовательская деятельность. Он преподает математику на всех курсах вместо уехавшего в Дерпт (Тарту) Бартельса; замещает профессора К.Броннера, не вернувшегося после отпуска в Казань; читает физические курсы и заведует физическим кабинетом; замещает отправившегося в кругосветное плавание астронома И.П.Симонова; читает астрономию и геодезию, приняв в свое ведение обсерваторию. Ряд лет он работает деканом физико-математического отделения. Коллосальный труд вкладывает он в упорядочивание библиотеки и в расширение ее физико-математической части. Он является вместе с тем одним из активнейших членов, а затем и председателем строительного комитета, занятого постройкой главного университетского корпуса. Наконец, несмотря на тысячи текущих дел и обязанностей, Лобачевский не прекращает напряженной творческой деятельности. Он пишет два учебника для гимназий: "Геометрию" (1823 г.) и "Алгебру" (1825 г.). "Геометрия" получает отрицательный отзыв у академика Н.И.Фусса, не оценившего тех изменений, который Лобачевский внес в традиционное изложение, и осудившего введение метрической системы мер, поскольку она создана в революционной Франции. "Алгебра" из-за внутренних проволочек в университете тоже не была напечатана.