Математическое моделирование

Методическое пособие - Компьютеры, программирование

Другие методички по предмету Компьютеры, программирование

(рис. 2).

Отметим, что площадь гистограммы относительных частот равна единице, так же, как интеграл от плотности вероятности в пределах от минус до плюс бесконечности равен единице. Площадь гистограммы равняется сумме площадей прямоугольников, построенных на каждом i-ом интервале:

 

 

Рис. 2. Гистограмма относительных частот

 

поскольку общее число измерений характеристики у равно сумме чисел попаданий в каждый из интервалов:

 

 

При необходимости выдвигается гипотеза о том, что полученное эмпирическое распределение согласуется с некоторым теоретическим распределением, имеющим аналитическое выражение для функции или плотности распределения. Эта гипотеза проверяется по тому или другому критерию. Например, при использовании критерия хи-квадрат в качестве меры расхождения используется выражение

 

(6)

 

где pi - определенная из выбранного теоретического распределения вероятность попадания случайной величины в i-й интервал.

Из теоремы Пирсона следует, что для любой функции распределения F(у) случайной величины у при N распределение величины имеет вид

 

(7)

 

где z - значение случайной величины k = Ng -(r +1) - число степеней свободы распределения хи-квадрат; r - количество параметров теоретического закона распределения; Г (k/2) - гамма-функция.

Функция распределения хи-квадрат табулирована по вычисленному значению и числу степеней свободы с помощью таблиц определяется вероятность (7). Если она превышает заданный уровень значимости С, то выдвинутая гипотеза принимается.

 

2. Метод повторных экспериментов

 

Характеристики нестационарных процессов. Для системы, процесс функционирования которой отличается от стационарного эргодического, нельзя вычислять вероятностные характеристики по одной реализации процесса, поскольку оценки могут получиться смещенными или несостоятельными. Следует ожидать, что если на ВС поступает поток заявок, интенсивность которого изменяется во времени, как это показано, например, на рис. 3. выходные характеристики такой системы относятся к нестационарным случайным функциям (процессам).

Известно, что в основе всех формальных методов лежит представление случайного процесса с помощью ансамбля реализации и описание его посредством характеристик, получаемых усреднением по ансамблю. Предположим, что случайный процесс Y(t) задан ансамблем реализации , а интересующая исследователя вероятностная характеристика в определяется предельным соотношением

 

(8)

 

где - оператор преобразования, лежащий в основе определения характеристики - количество реализации, по которым производится усреднение.

При усреднении по ограниченной совокупности реализации прямые измерения значений вероятностной характеристики в могут быть выполнены в соответствии с формулой

 

(9)

Полной вероятностной характеристикой случайного процесса может служить многомерная функция распределения вероятности мгновенных значений процесса. Случайный процесс Y(t) считается исчерпывающе описанным в вероятностном смысле на интервале , если задана его Nr- мерная функция распределения:

 

(10)

 

которая соответствует любому сочетанию моментов времени tr на интервале (О, Т) при произвольном Nr, в том числе при . Исходя из этих предпосылок, при исследовании стохастических систем необходимо получать для каждой выходной характеристики совокупности Ni реализации, причем по каждой реализации следует измерять значения no Nr сечениям (отсчетам), как это показано на рис. 3. Таким способом могут быть получены вероятностные оценки выходных характеристик, если они являются нестационарными или стационарными неэргодическими процессами.

 

 

Рис. 3. Реализации нестационарного случайного процесса

 

Алгоритм повторных экспериментов. При имитационном моделировании нестационарного режима функционирования ВС требуется получить ni реализации случайных процессов по всем выходным характеристикам. С этой целью необходимо проводить ni имитационных экспериментов в интересующей исследователя области определения случайных процессов (О, Т).

Изменение характера сочетаний случайных событий в каждом последующем эксперименте может быть достигнуто заменой начальных значений датчиков случайных чисел, используемых в процессе моделирования, в частности, для генерации управляющих последовательностей. Это можно реализовать, например, так: при каждом последующем эксперименте в качестве начальных значений датчиков случайных чисел используют последние значения предыдущего эксперимента.

Исследование систем с нестационарным режимом путем имитационного моделирования с применением метода повторных экспериментов сводится к следующему. Проводится Ni имитационных экспериментов. При каждом последующем эксперименте параметры системы и нагрузки устанавливаются на исходные значения и в процессе каждого эксперимента остаются неизменными или изменяются по одним и тем же зависимостям. Датчики случайных чисел устанавливаются в начальное состояние только один раз - перед моделированием и до конца моделирования вырабатывают последовательности случайных чисел.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

&nbs