Математическое моделирование
Методическое пособие - Компьютеры, программирование
Другие методички по предмету Компьютеры, программирование
p;
Рис. 4. Алгоритм моделирования по методу повторных экспериментов
Период моделирования Тm по каждому эксперименту разделяется на Nr сечений. Интервал времени моделирования между двумя соседними сечениями будем называть прогоном. В каждом эксперименте для фиксированных моментов времени определяются численные значения выходных характеристик.
По каждому i-му сечению для всех выходных характеристик может определяться эмпирическая многомерная функция или плотность распределения, оцениваться математическое ожидание my(tr), корреляционная функция или дисперсия Dy (tr) по всей совокупности Ni реализации.
Для обеспечения статистической достоверности результатов обычно требуется проведение нескольких сотен или тысяч экспериментов с измерением и обработкой вектора выходных характеристик по нескольким десяткам сечений. Очевидно, что выполнение этой работы вручную не представляется возможным в приемлемые сроки. Это означает, что на ВС должно быть возложено не только проведение имитации, но и реализация метода повторных экспериментов.
Машинный алгоритм повторных экспериментов представлен на рис. 4. В первом блоке выполняется ввод данных о моделируемой системе и нагрузке, а также производится инициализация программы. Отдельно выделен блок настройки датчиков случайных чисел, чтобы подчеркнуть, что датчикам задаются начальные значения до основных циклов моделирования. В дальнейшем датчики вырабатывают неповторяющиеся последовательности случайных чисел. Затем вводятся и размещаются в соответствующих массивах и переменных исходные данные. В частности, задаются количества прогонов Nr, экспериментов Ni и период моделирования Тm.
В следующем блоке выполняется имитационное моделирование процесса функционирования так, как это описано в п. 2, по тому или другому алгоритму. В ходе имитации изменяются значения тех переменных параметров, которые заданы как функции времени, и постоянно отслеживается достижение конца прогона, т. е. событие, когда текущее модельное время станет равным tr. При выполнении этого условия определяются, вычисляются и запоминаются статистические данные по r-му сечению, после чего имитация продолжается.
Если выполнено Nr прогонов, т. е. завершен очередной эксперимент, формируется номер следующего эксперимента и управление передается блоку подготовки исходных данных. После проведения Ni экспериментов завершается обработка и вывод результатов моделирования.
Расчет характеристик по методу повторных экспериментов. При анализе систем с нестационарным процессом функционирования путем имитационного моделирования с использованием метода повторных экспериментов для каждой выходной характеристики, которая является случайным процессом, зачастую оценивается математическое ожидание, корреляционная функция или дисперсия, а также могут быть построены по каждому сечению гистограммы, чем определяется многомерная плотность распределения вероятностей.
Математическое ожидание случайного процесса Y (t) - это неслучайная функция ту(t), которая при каждом значении аргумента tr представляет собой математическое ожидание соответствующего сечения случайной функции:
Корреляционная функция случайного процесса - это тоже неслучайная функция двух аргументов Ку(t, t'), которая при каждой паре значений аргументов t,t' равна корреляционному моменту соответствующих сечений случайной функции:
При равенстве t=t' корреляционная функция превращается в дисперсию случайной функции:
В соответствии с формулой (9) Nr-мерная плотность распределения вероятностей оценивается по формуле:
(11)
где значения функции равны 1 при и равны 0, если хотя бы одно из этих неравенств для i-й реализации не выполняется.
В результате вычисления по формуле (11) получается многомерная плотность распределения вероятностей, подобная той, которая изображена на рис. Важно отметить, что для проверки выполнения стохастических ограничительных условий нет необходимости вычислять плотность распределения по формуле (11), а достаточно подсчитать общее количество Ny и количество Np значений измерения случайной величины, попадающих между ограничивающими пределами, по всей совокупности экспериментов, а затем определить вероятность выполнения ограничительного условия:
Py=NP/Ny (12)
При моделировании вычисления результатов производятся в конце каждого прогона путем наращивания итогов. В частности, количественные вероятностные значения таких выходных характеристик, как длины очередей к каждому устройству, времена реакции по каждому потоку заявок и времена загрузки каждого устройства, определяются по r-му сечению для i-го эксперимента по следующим формулам. Оценка математического ожидания длины очереди к устройству:
(13)
где Li-1 - математическое ожидание длины очереди за предыдущие (i-1) экспериментов; li - длина очереди по r-му сечению для i-го эксперимента.
Дисперсия длины очереди
где D[Li-1] - дисперсия длины очереди за предыдущие (i - 1) экспериментов; в первом эксперименте дисперсия принимается равной нулю.
По временам реакции и загрузки при достаточно большом количестве сечений, когда процесс можно считать стационарным на протяжении одного прогона, текущие значения математических ожиданий и