Математическое моделирование

Методическое пособие - Компьютеры, программирование

Другие методички по предмету Компьютеры, программирование

бработка первой заявки потока Х2. По разности времен t6 и t2 вычисляется время реакции по этой заявке:

 

 

Следующий минимальный момент времени t7 - это поступление второй заявки потока Х2. Определяется время поступления очередной заявки этого потока . Затем вычисляется время обслуживания второй заявки на мониторе Т223 и отмечается момент после чего заявка становится в очередь, так как процессор занят. Эта заявка поступает на обслуживание в процессор только после его освобождения в момент времени t9. В этот же момент заявка потока Х1 начинает обслуживаться принтер. Определяются времена обслуживания Т221 и T112 по результатам случайных испытаний и отмечаются моменты окончания обслуживания . В момент времени t10 завершается полное обслуживание первой заявки потока X1. Разность между этим моментом и моментом времени t1 дает первое значение времени реакции по потоку .

Вторая заявка потока Х2 в момент t11 поступает с процессора на- монитор и обслуживается им в течение времени Т223, которое завершается в момент Снова определяется очередное минимальное время. Это время - t12 когда в систему поступает вторая заявка из потока Х1. Тогда вычисляется время поступления третьей заявки потока . Вторая заявка обслуживается устройством ввода в течение времени Т214 (момент завершения - ) и процессором - T211 (момент завершения - ). В момент t13 состояние системы не изменяется, но вычисляется второе значение времени реакции по потоку Х2:

 

 

В момент времени t15 систему поступает третья заявка потока Х2. Определяется момент поступления четвертой заявки потока (предполагается, что пользователь может посылать запросы, не дожидаясь ответов на предыдущие запросы). Третья заявка обслуживается монитором в течение времени T323, но с момента окончания обслуживания () переходит в состояние ожидания, так как занят процессор.

Следующее минимальное время t17, - это время поступления четвертой заявки потока Х2. После ее обслуживания монитором (момент завершения ) она также переходит в ожидание, т. е. образуется очередь из двух заявок. После освобождения процессора в момент t19 начнется обслуживание процессором третьей заявки потока X2, а затем с момента - монитором. По завершении этого обслуживания () можно будет вычислить третье значение времени реакции по потоку X2:

 

 

С момента времени t19 принтер начнет обслуживание второй заявки потока X1 и завершит его к моменту , после чего определяется второе значение времени реакции по потоку X1:

 

 

Указанные процедуры выполняются до истечения времени моделирования. В результате получается некоторое количество (выборка) случайных значений времен реакции {u1} и {u2} по первому и второму потокам. По этим значениям могут быть определены эмпирические функции распределения и вычислены количественные вероятностные характеристики времен реакции. В процессе моделирования можно суммировать продолжительности занятости каждого устройства обслуживанием всех потоков. Например, на рис. 1 занятость процессора 1 выделена заштрихованными ступеньками. Если результаты суммирования разделить на время моделирования, то получатся коэффициенты загрузки устройств.

Одновременно появляется возможность определения таких характеристик системы, как время ожидания заявок в очереди, число заявок, обслуженных системой, средняя и максимальная длина очереди заявок к каждому из устройств, требуемая емкость памяти и некоторые другие характеристики.

Имитационное моделирование дает возможность учесть надежностные характеристики ВС. В частности, если известны времена наработки на отказ и восстановления всех входящих в систему устройств, определяются моменты возникновения отказов устройств в период моделирования и моменты восстановления. Если в моменты возникновения отказа устройство занято обслуживанием заявки, то может приниматься разное решение в зависимости от типа устройства и режима его работы: заявка снимается и больше не обслуживается (выбывает из системы) или заявка помещается в очередь, а после восстановления устройства дообслуживается или поступает на повторное обслуживание.

 

2. Обобщенные алгоритмы имитационного моделирования

 

Алгоритм моделирования по принципу особых состояний. В изложенном выше примере моделирование проводилось по принципу особых состояний (событий). В качестве особых событий выделены поступление заявки в систему, освобождение элемента после обслуживания заявки, завершение моделирования. В общем случае в системе могут быть выделены события и других типов, например возникновение отказа устройства в процессе обслуживания заявки и завершение восстановления устройства после отказа.

Рис. 2. Алгоритм моделирования по принципу особых состояний

 

Процесс имитации функционирования системы развивался во времени с использованием управляющих последовательностей, определяемых по функциям распределения вероятностей исходных данных путем проведения случайных испытаний. В качестве управляющих последовательностей использовались в примере последовательности значений периодов следования заявок по каждому i-му потоку {} и длительностей обслуживания заявок i-го потока k-м устройством {Tik}. Моменты наступления будущих событий определялись по простым рекуррентным соотношениям. Эта особенность дает возможность построить простой циклический алгоритм моделирования, к