Построение краткосрочного прогноза в рамках адаптивной модели
Дипломная работа - Математика и статистика
Другие дипломы по предмету Математика и статистика
?ачения этих переменных на период упреждения. При этом возможны два пути: воспользоваться фактическими значениями экзогенных переменных (так называемый прогноз ex post) и ожидаемыми их значениями (так называемый прогноз ex ante). Естественно, что точность прогноза ex post, который, как правило, и получают при проверке, будет выше, чем прогноза ex ante, так как в первом случае будет исключено искажающее влияние погрешности в значении экзогенных переменных.
Проверка точности одного прогноза мало что может сказать исследователю. В самом деле, на формирование исследуемого явления влияет множество разнообразных факторов, поэтому полное совпадение или значительное расхождение прогноза и его реализации может быть следствием просто особо благоприятных (или неблагоприятных) стечений обстоятельств. Единичный хороший прогноз может быть получен и по плохой модели, и наоборот. Отсюда следует, что о качестве прогнозов применяемых методик и моделей можно судить лишь по совокупности сопоставлений прогнозов и их реализации.
Известно, ширина доверительного интервала в значительной мере, зависит от принятой доверительной вероятности. Чем меньше эта вероятность, тем уже интервал. Таким образом, сопоставление коэффициентов для разных моделей может иметь смысл только при условии, что доверительные вероятности приняты одинаковыми. Если прогнозы получены в виде точечных оценок, то при проверке качества прогнозирования можно использовать целый ряд статистических характеристик, например среднюю абсолютную и среднеквадратическую ошибку прогноза[8]. Указанные две характеристики качества имеют ту же размерность, что и сами показатели прогноза. Легко заметить, что значения обеих характеристик существенно зависят от масштаба измерения уровней исследуемых явлений.
Применение такой меры качества прогноза, как коэффициента корреляции между прогнозами и их реализациями, вообще говоря, возможно, однако следует помнить, что коэффициент парной корреляции указывает на степень близости к линейному соотношению коррелируемых величин. Так, если коэффициент корреляции прогнозов и реализации равен единице, то это вовсе не означает, что соответствующие показатели полностью совпали, просто они могут находиться в строгом линейном соотношении.
Одним из исследователей проблем экономического прогнозирования, Г. Тейлом предложен в качестве меры качества прогнозов коэффициент расхождения (или коэффициент несоответствия), числителем которого является среднеквадратическая ошибка прогноза, а знаменатель равен квадратному корню из среднего квадрата реализации. Итак,
(38)где и xt - соответственно предсказанное и фактическое (реализованное) изменения переменной. Коэффициент v=0, когда все =xt (случай совершенного прогнозирования); v=l, когда процесс прогнозирования приводит к той же среднеквадратической ошибке, что и наивная экстраполяция неизменности приростов; наконец, v>1, когда прогноз дает худшие результаты, чем предположение о неизменности исследуемого явления. Верхней границы коэффициент не имеет. Коэффициент расхождения может быть использован при сопоставлении качества прогнозов, получаемых на основе различных методов и моделей. В этом его несомненное достоинство. К тому же он имеет весьма прозрачный смысл. Величина v поддается разложению на составляющие (частные коэффициенты расхождения), характеризующие влияние ряда факторов.
Выше приведенные меры качества прогнозов (их точность) рассматривались при условии, что исследователь располагает информацией об истинных значениях величин, которые он оценивал в ходе разработки прогнозов. Такие меры качества, несомненно, представляют ценность при изучении различных методик прогнозирования. Однако в практической работе проблему точности прогноза надо решать, как правило, тогда, когда период упреждения еще не прошел и истинное значение прогнозируемой переменной неизвестно. В этом случае проблема точности может рассматриваться в плане сопоставления априорных качеств, свойств, присущих альтернативным прогностическим моделям. Так, если прогнозирование осуществляется статистическими методами, то, вероятно, понятие точности прогноза можно сделать более узким, а именно связав априорную точность прогноза с размером доверительного интервала.[9] Модель, дающая более узкий доверительный интервал при одной и той же доверительной вероятности, и является более точной. (Разумеется, при этом теоретическая обоснованность сравниваемых моделей является примерно равной). Очевидно, что надежность прогноза определяется вероятностью реализации соответствующей прогностической оценки. Чем она выше, тем выше и надежность. Вероятность реализации может быть оценена субъективно (экспертное прогнозирование) или может быть связана с доверительными интервалами прогноза, если последний основывается на статистической модели. В этом случае надежность является характеристикой, сопряженной мере точности, если под мерой точности понимается размер доверительного интервала. Отсюда чем выше надежность прогноза, тем ниже его точность, и наоборот. Рассмотренные здесь понятия априорной точности и надежности прогнозов, связанные с доверительными интервалами, являются в значительной мере условными показателями. Они могут использоваться в практической работе лишь при условии, что принятая для получения прогнозов модель имеет серьезное теоретическое обоснование и спецификация модели корректна. В противном случае полученные доверитель?/p>