Построение краткосрочного прогноза в рамках адаптивной модели
Дипломная работа - Математика и статистика
Другие дипломы по предмету Математика и статистика
спространенных приемов выравнивания ряда. В его основе лежит расчет экспоненциальных средних. Экспоненциальное сглаживание ряда осуществляется по рекуррентной формуле [4]
,(1)
где значение экспоненциальной средней в момент t;
- параметр сглаживания, ?= const, 0 < < 1;
- коэффициент дисконтирования данных. Он характеризует обесценивание данных в единицу времени и отражает степень доверия более поздним наблюдениям.
Выражение (1) можно переписать следующим образом:
(2)
Экспоненциальная средняя на момент t здесь выражена как экспоненциальная средняя предшествующего момента плюс доля, а разницы текущего наблюдения и экспоненциальной средней прошлого момента. Если последовательно использовать рекуррентное соотношение (1), то экспоненциальную среднюю можно выразить через значения временного ряда :
(3)
где n - количество членов ряда;
- некоторая величина, характеризующая начальные условия для первого применения формулы (1) при t=l.
Так как , то при , а сумма коэффициентов . Тогда . Таким образом, величина оказывается взвешенной суммой всех членов ряда. Причем веса падают экспоненциально в зависимости от давности (возраста) наблюдения. Это и объясняет, почему величина названа экспоненциальной средней. Если, например, , то текущее наблюдение будет иметь вес , а веса предшествующих данных составят соответственно и т. д.
Простая и прагматически ясная модель временного ряда имеет следующий вид: где - случайные некоррелированные отклонения, или шум, со средним значением 0 и дисперсией . Константа относительно стабильна на каждом временном интервале, но может также медленно изменяться со временем. Один из интуитивно ясных способов выделения состоит в том, чтобы использовать сглаживание скользящим средним, в котором последним наблюдениям приписываются большие веса, чем предпоследним, предпоследним большие веса, чем пред-предпоследним и т.д. Простое экспоненциальное именно так и устроено. Здесь более старым наблюдениям приписываются экспоненциально убывающие веса, при этом, в отличие от скользящего среднего, учитываются все предшествующие наблюдения ряда, а не те, что попали в определенное окно.
Применим к нему процедуру экспоненциального сглаживания (1). Тогда
Найдем математическое ожидание
и дисперсию
(4)
Так как
Таким образом, экспоненциальная средняя имеет те же математическое ожидание, что и ряд но меньшую дисперсию. Как видно из (4), при высоком значении дисперсия экспоненциальной средней незначительно отличается от дисперсии ряда . Чем меньше , тем в большей степени сокращается дисперсия экспоненциальной средней. Следовательно, экспоненциальное сглаживание можно представить как фильтр, на вход которого в виде потока последовательно поступают члены исходного ряда, а на выходе формируются текущие значения экспоненциальной средней. И чем меньше , тем в большей степени фильтруются, подавляются колебания исходного ряда.
После появления работ Брауна экспоненциальная средняя часто используется для краткосрочного прогнозирования. В этом случае предполагается, что ряд генерируется моделью
где - варьирующий во времени средний уровень ряда;
- случайные неавтокоррелированные отклонения с нулевым математическим ожиданием и дисперсией .
Прогнозная модель имеет вид
(5)
где - прогноз, сделанный в момент на единиц времени (шагов)вперед;
- оценка , (знак над величиной здесь и далее будет означать оценку).
Средством оценки единственного параметра модели служит экспоненциальная средняя . Таким образом, все свойства экспоненциальной средней распространяются на прогнозную модель. В частности, если рассматривать как прогноз на 1 шаг вперед, то в выражении (2) величина есть погрешность этого прогноза, а новый прогноз St получается в результате корректировки предыдущего прогноза с учетом его ошибки. В этом и состоит существо адаптации.
При краткосрочном прогнозировании желательно как можно быстрее отразить изменения и в то же время как можно лучше очистить ряд от случайных колебаний. Таким образом, с одной стороны, следует увеличивать вес более свежих наблюдений, что может быть достигнуто повышением (см. (3)), с другой стороны, для сглаживания случайных отклонений величину нужно уменьшить. Как видим, эти два требования находятся в противоречии. Поиск компромиссного значения составляет задачу оптимизации модели.
Экспоненциальное сглаживание является простейшим вариантом самообучающейся модели. Вычисления просты и выполняются итеративно. Они требуют даже меньше арифметических операций, чем скользящая средняя, а массив прошлой информации уменьшен до одного значения . Такую модель будем называть адаптивной экспоненциального типа, а величину - параметром адаптации.
.3.2 Условия экспоненциального сглаживания
Экспоненциальное выравнивание всегда требует предыдущего значения экспоненциальной средней. Когда процесс только начинается, должна быть некоторая величина которая может быть использована в качестве значения, предшествующего . Если есть прошлые данные к моменту начала выравнивания, то в качестве первого, значения S0 можно использовать арифметическую среднюю всех имеющихся точек или какой-то их части. Когда для такого оценивания S0 нет данных, требуется предсказание начального уровня ряда.
Предсказани?/p>