Построение краткосрочного прогноза в рамках адаптивной модели
Дипломная работа - Математика и статистика
Другие дипломы по предмету Математика и статистика
яда и случайных ошибок выражаются с помощью линейных операций над ними: сложения-вычитания и умножения-деления на действительные числа.
1.4.1 Авторегрессия первого порядка AR(1)
Рассмотрим процесс X(t), значения которого в момент времени t формируется как комбинация значений этого процесса в предшествующий момент t-1 и некоторой случайной составляющей , независимой от значения X(t-l).
Процессы такого типа могут описывать как экономические, так и технологические временные ряды. Мы предположим, что - это процесс белого шума, т.е. что в разные моменты t случайные величины независимы и одинаково распределены по нормальному закону с математическим ожиданием равным нулю и дисперсией D.
Определение. Случайный процесс X(t) называют процессом авторегрессии первого порядка (коротко AR(1)), если для него выполняется соотношение
(7)
где - параметр авторегрессии.
С помощью соотношения (7) можно задать значение процесса X(t) в любой момент времени через значения процесса X(t), если известна величина в момент .
Определим числовые характеристики стационарного процесса авторегрессии. Пусть
Взяв математическое ожидание от обеих частей (7), получим, что . Отсюда следует, что , если . Взяв дисперсию от обеих частей (7), получим, что . Отсюда следует (учитывая, что ), что
Таким образом, для стационарного процесса AR(1) получаем, что и для любых t и k
Похожим приемом можно вычислить при k= 1,2,.... Чтобы вычислить умножим (7) на и возьмем математическое ожидание. Получаем, что . Так как и независимы, то Поэтому , т.е.
Для вычисления заметим, что, согласно (7) а потому . Последнее равенство умножим на и возьмем математическое ожидание. Вычисляя, как выше, найдем, что
Аналогичным образом вычисляем (здесь соотношение (7) надо применить дважды). Получаем, что . Действуя, таким образом, и далее, найдем для любого k, что
Из этих соотношений следует, что
(8)
Таким образом, автокорреляционная функция AR(1) процессов экспоненциально убывает с ростом поправки k. Обратим внимание, что чем ближе значение к единице, тем более гладко ведет себя траектория процесса AR(1) по сравнению с траекторией белого шума. И наоборот, чем ближе значение к минус единице, тем более изломанно (пилообразно) ведет себя траектория.
Стационарный процесс авторегрессии первого порядка с ненулевым средним . определяется соотношением:
(9)
Здесь
Учитывая стационарность процесса X(t), в качестве оценки можно взять среднее по траектории: где . Еще ранее для мы получили, что
Заменяя его оценкой по траектории, получаем для оценку:
(10)
Наконец, уже известное соотношение DX(t) позволяет оценить и Для этого можно воспользоваться стандартной оценкой дисперсии DX(t) стационарного процесса:
Отсюда
(11)
.4.2 Авторегрессия второго порядка AR(2)
Текущее значение процесса AR(2) в момент t формируется как линейная комбинация его значений в предыдущие моменты (t-1) и (t-2), и независимой от них случайной величины . Как и ранее, процесс будем считать белым шумом. Процессы AR(2) обладают большей памятью, чем процессы AR(1).
Определение. Случайный процесс X(t) называют процессом авторегрессии второго порядка (коротко AR(2)), если для X(t) выполняется соотношение
(12)
где и - некоторые константы.
С помощью соотношения (12) значения X(t) можно определить в любой момент через посредство последовательности и значений X(t) в моменты t0 и
Условие стационарности. Так же, как это было для AR(1), из условия стационарности X(t) вытекает, что MX(t)=0. Условие стационарности накладывает также определенные ограничения на параметры , Ниже будет показано, что для стационарного процесса AR(2)
(13)
Ограничения (13) задают на плоскости треугольную область. Верно и обратное если точка с координатами попадает внутрь этого треугольника, то с помощью (12) можно задать стационарный процесс AR(2) с параметрами .
Определим числовые характеристики и их оценки. Пусть . Для стационарного процесса AR(2) с нулевым средним для любого t. С использованием (12) для выводим соотношения
Вычисляя , таким же образом получим, что
Для автокорреляционной функции эти равенства дают
(14)
Соотношения (14) называют уравнениями Юла-Уолкера. Они связывают параметры процесса AR(2) со значениями его автокорреляционной функции:
(15)
Аналогичным путем для произвольного целого k получаем соотношение:
(16)
Рассмотрим это соотношение как уравнение, и найдем все последовательности, скажем , которые ему удовлетворяют. Решения уравнения (16) связаны с корнями квадратного уравнения (его называют характеристическим)
(17)
Пусть - корни (17), которые сейчас предположим различными. Случай рассмотрим позже. Легко проверить, что последовательности удовлетворяют (16). Более того, нетрудно доказать, что любое решение (16) является их линейной комбинацией, т.е. любое решение (16) имеет вид:
(18)
где - произвольные числа.
Теперь рассмотрим случай, когда уравнение (17) имеет кратный корень Легко проверить, что в этом случае линейно-независимыми решениями (16) служат последовательности . Поэтому общее решение (16) в случае кратного корня (17) имеет в?/p>