Построение краткосрочного прогноза в рамках адаптивной модели
Дипломная работа - Математика и статистика
Другие дипломы по предмету Математика и статистика
?ные оценки параметров, а затем точный метод, чтобы получить окончательные оценки. Процедура оценивания минимизирует (условную) сумму квадратов остатков модели. Если модель не является адекватной, может случиться так, что оценки параметров на каком-то шаге станут неприемлемыми - очень большими (например, не удовлетворяют условию стационарности). В таком случае, SS будет присвоено очень большое значение (штрафное значение). Обычно это "заставляет" итерационный процесс удалить параметры из недопустимой области. Однако в некоторых случаях SS может иметь очень большое значение. В таких случаях следует с осторожностью оценивать пригодность модели.
Проведя оценку параметров модели ARIMA(1,1,0) методом Меларда, получаем результаты, представленные в таблице 3, где:
МАХ - максимальная цена;
Initial SS - начальное значение условной суммы квадратов (равно сумме квадратов максимальной цены);
Final SS - финальное значение условной суммы квадратов, которое составляет 97,92% от начального значения, что вполне приемлемо и свидетельствует о том, что оценки параметров находятся в области допустимых значений;
р(1) - параметр уравнения авторегрессии.
Таблица 3 - Результаты оценки параметров модели ARIMA(1,1,0)
Variable: MAX Transformations: D(l) Model: (1;1;0) No. of obs. : 503 Initial SS = 51817, Final SS =50741 ( 97,92%) MS = 101,08 Parameters (p/Ps Autoregressive, q/Qs-Moving aver.) highlight: p < 0.05 p(1) Estimate 0,1445 Std.Err. 0,0444Input: MAX Transformations: D(l) Model:(1,1,0) MS Residual=101,07Param.Asympt. Std.Err.Asympt. t( 502)pLower 95% ConfUpper 95% ConfP(1)0,144550,0443533,259160,0010,0574130,231693
Т.о. построенная модель имеет вид:
(39)
или
(39/)
Рассмотрим вторую часть таблицы. В первом столбце приведены точечные оценки параметров, во втором - асимптотическая стандартная ошибка оценок, в третьем - значения t-критерия, в четвертом - уровни надежности, в пятом и шестом - соответственно нижние и верхние границы 95%-ных доверительных интервалов для соответствующего неизвестного параметра модели. Мы видим, что интервал (0.0574; 0.2316) с вероятностью 0.95 накрывает значение неизвестного параметра ф. Ширина интервала 0.17 также как стандартная ошибка, приведенная во 2-ом столбце, один из показателей качества оценки. Чем более узким является доверительный интервал и чем меньше ошибка, тем больше оснований опираться на построенную оценку неизвестного параметра. В данном случае, стандартная ошибка равна примерно 0.04 что на порядок меньше оценки р(1). Ширина доверительного интервала так же достаточно малая величина. Известно, что табличное значение t-критерия Стьюдента для n-1=502 степеней свободы и уровня значимости 0.05 равно t005;501 = 1.96[14]. Когда расчетное значение t-критерия превосходит его табличное значение при заданном уровне значимости, оцененный коэффициент считается значимым. Из таблицы видно, что параметр значим, т.к. расчетное значения t-критерия много больше табличного: 3.26>1.96. Статистическая значимость результата представляет собой оцененную меру уверенности в его истинности (в смысле репрезентативности выборки). Далее указан р - уровень - это показатель, обратно пропорциональный надежности результата. Более высокий р - уровень соответствует более низкому уровню доверия найденным по выборке результатам, р - уровень равный 0.05 показывает, что имеется 5% вероятность, что найденный по выборке результат является лишь случайной особенностью данной выборки. Не существует никакого способа избежать произвола при принятии решения о том, какой уровень значимости следует действительно считать "значимым". Выбор определенного уровня значимости, выше которого результаты отвергаются как ложные, является достаточно произвольным. На практике окончательное решение обычно зависит от того, был ли результат предсказан априори (т.е. до проведения опыта) или обнаружен апостериорно в результате многих анализов и сравнений, выполненных с множеством данных, а также на традиции, имеющейся в данной области исследований. Обычно во многих областях результат является приемлемой границей статистической значимости[15]. Таким образом, из таблицы видна высокая значимость параметра.
.6 Исследование адекватности модели
Анализ остатков чрезвычайно важный момент в установлении адекватности модели. Если остатки систематически распределены (например, отрицательны в первой части ряда и примерно равны нулю во второй) или включают некоторую периодическую компоненту, то это свидетельствует о неадекватности модели. Рассмотрим остатки временного ряда. Остатки представляют собой разности между наблюдаемыми значениями ряда и оцененными с помощью модели. График остатков напоминает траекторию белого шума (см. рисунок 8).
Рисунок 8 - График остатков ARIMA(1,1,0) ряда
Проверка адекватности модели основана на проверке выполняемости остаточной последовательности четырех свойств[3]:
1)случайность колебаний уровней ряда остатков;
2)соответствие распределения случайной компоненты нормальному закону распределения;
)равенство нулю мат. ожидания случайной компоненты;
4)независимость значений уровней случайной последовательности, т.е. отсутствие существенной автокорреляции.
.6.1 Проверка случайности остатков
Для проверки случайности колебаний уровней остаточной компоненты воспользуемся критерием пиков (поворотных точек)[16]. Уровень последовательности et считается максимумом, если он больше двух рядом стоящих уровней, т.е. и минимумом, если он меньше обоих соседних уровней, т.е. . В обоих случаях считается поворотной точкой. Общее число поворотных точек для о