Построение краткосрочного прогноза в рамках адаптивной модели
Дипломная работа - Математика и статистика
Другие дипломы по предмету Математика и статистика
µ может быть сделано исходя из априорных знаний о процессе или на основе его аналогии с другими процессами. После k шагов вес, придаваемый первому значению, равен . Если есть уверенность в справедливости первого значения , то можно коэффициент взять малым. Если такой уверенности нет, то параметру следует дать большое значение, с таким расчетом, чтобы влияние первого значения быстро уменьшилось. Однако большое значение , как это следует из (4), может явиться причиной большой дисперсии колебаний St. Если требуется подавление этих колебаний, то после достаточного удаления от начального момента времени величину можно убавить.
Рассмотрим роль параметра в первый период сглаживания в случае, когда нет уверенности в справедливости выбора первой величины . В этом случае получение прогнозов по экспоненциальной средней, построенной на малом отрезке ряда (выборке) чревато большими ошибками. Для того чтобы элиминировать избыточный вес, приданный первой величине, один из ученых Р. Вейд предлагает модифицировать процедуру сглаживания следующим образом.
Для исходного момента времени запишем:
где S0 - как и раньше, начальная оценка уровня ряда.
Так как коэффициенты и в сумме теперь не дают единицу, то следует использовать множитель, равный единице, деленной на сумму коэффициентов. Таким образом, модифицированной экспоненциальной средней для t=l будет
и вообще
Сущность этого метода состоит в том, чтобы убрать избыточный вес от веса, даваемого первому значению , и распределить его пропорционально по всем членам ряда. Прогнозы, получаемые по соответствующей модифицированной модели, основываются в большей степени на фактических данных, чем на предварительной оценке S0 даже при малых выборках. Для того чтобы сократить время вычислений, целесообразно вернуться к обычному экспоненциальному сглаживанию, когда сумма коэффициентов приближается к единице. На основе эмпирического анализа Р. Вейд рекомендует осуществлять такой переход при сумме коэффициентов 0.995. При заданном значении можно заранее определить, на каком шаге следует вернуться к обычной модели.
.3.3 Постоянная сглаживания
Выбору величины постоянной сглаживания следует уделять особое внимание. Поиски должны быть направлены на отыскание оснований для выбора наилучшего значения. Нужно учитывать условия, при которых эта величина должна принимать значения, близкие то одному крайнему значению, то другому. Нетрудно заметить, что при представляет случай абсолютной фильтрации и полного отсутствия адаптации. При приходим к так называемой наивной модели в соответствии с которой прогноз на любой срок равен текущему фактическому значению ряда. На практике эта модель из-за простоты пользуется особой популярностью.
Постоянная сглаживания характеризует скорость реакции модели на изменения уровня процесса, но одновременно определяет и способность системы сглаживать случайные отклонения. Поэтому величине следует давать то или иное промежуточное значение между 0 и 1 в зависимости от конкретных свойств динамического ряда.
В качестве удовлетворительного компромисса Р. Браун рекомендует брать в пределах от 0.1 до 0.3. Опыт работы с экономическими рядами показывает, что наибольшая точность прогнозирования может быть достигнута при любых допустимых значениях . Однако, как правило, если в результате испытаний обнаружено, что наилучшее значение константы близко к 1, следует проверить законность выбора модели данного типа. Часто к большим значениям приводит наличие в исследуемом ряде ярко выраженных тенденций или сезонных колебаний. В этом случае для получения эффективных прогнозов требуется другая модель.
Ясно, что наилучшее значение в общем случае должно зависеть от срока прогнозирования . Для конъюнктурных прогнозов в большей мере должна учитываться свежая информация. При увеличении периода упреждения более поздняя информация, отражающая последнюю конъюнктуру, должна, по-видимому, иметь несколько меньший вес, чем в случае малых . Для того чтобы сгладить конъюнктурные колебания, следует в большей мере учитывать информацию за прошлые периоды времени. Для проведения подобного анализа вводят понятие среднего возраста данных. Возраст текущего наблюдения равен 0, возраст предыдущего наблюдения равен 1 и т. д. Средний возраст - это сумма взвешенных возрастов данных, использованных для подсчета сглаженной величины. Причем возраста имеют те же веса, что и соответствующая информация. При экспоненциальном выравнивании вес, даваемый точке с возрастом , равен , где и средний возраст информации равен:
(6)
Таким образом, чем меньше , тем больше средний возраст информации. Для конъюнктурных прогнозов значение , как правило, надо брать большим, а для более долгосрочных - малым.
На практике параметр сглаживания часто ищется с поиском на сетке. Возможные значения параметра разбивают сеткой с определенным шагом. Например, рассматривается сетка значений от =0.1 до =0.9, с шагом 0.1. Затем выбирается , для которого сумма квадратов (или средних квадратов) остатков (наблюдаемые значения минус прогнозы на шаг вперед) является минимальной.
.4 Линейные модели временных рядов
Рассмотрим некоторые математические модели временных рядов: процессы авторегрессии, скользящего среднего и их комбинации. Эти модели называют линейными, так как определяющие их соотношения для элементов временного р