Построение краткосрочного прогноза в рамках адаптивной модели
Дипломная работа - Математика и статистика
Другие дипломы по предмету Математика и статистика
Формальное определение ЧАКФ дано. Посмотрим, каковы ее свойства. Рассмотрим для примера стационарный процесс авторегрессии первого порядка (1). Согласно (2), в этом случае , причем . По определению ЧАКФ, здесь . Чтобы найти , надо рассмотреть систему Юла-Уолкера (28) при р=2 и ее решение . С учетом (2), получаем, что удовлетворяют условиям
Умножим первое уравнение на и вычтем из второго. Получим, что . Так как , то это равенство возможно лишь при . Подобным способом находим, что для AR(1)
(30)
Обратно, если выполняется (30), то процесс является процессом авторегрессии первого порядка.
Приведем без доказательства некоторые свойства частной автокорреляционной функции.
1. Для любого .
. При имеет место .
. Если рассматриваемый стационарный процесс является AR(p) процессом, то все при .
Для того, чтобы получить оценки по реализации , следует для каждого k решить соответствующую систему уравнений Юла-Уолкера (28), в которой значения автокорреляционной функции заменены их выборочными оценками . На практике в статистических пакетах для вычисления оценок используется специальные рекурсивные процедуры, позволяющие быстро осуществить вычисления оценок. Мы не будем подробнее останавливаться на этом вопросе. Последовательность оценок называют выборочной частной автокорреляционной функцией.
Укажем некоторые статистические свойства оценок при условии, что они построены по реализации AR(p) процесса. При
M(31)
Указанные аппроксимации справедливы, если k много меньше длины реализации n. Это свойство оценок позволяет использовать выборочную частную автокорреляционную функцию для подбора порядка p модели процесса авторегрессии.
Подбор порядка р модели AR(p) процесса. Правило предварительного выбора порядка модели AR(p) процесса с использованием выборочной частной автокорреляционной функции звучит так. В качестве предварительного порядка модели AR(p) можно рассматривать такое число р, начиная с которого все последующие оценки выборочной частной автокорреляционной функции отклоняются от нуля не более чем на . То есть
для всех
Окончательный подбор порядка модели AR(p) процесса связан со статистической значимостью полученных коэффициентов модели и детальным изучением поведения остатков, получаемых вычитанием из исходного ряда значений подобранной AR(p) модели . Пусть - оценки коэффициентов подобранной модели. Для удобства записи формул обозначим первые р значений реализации через . Тогда подобранное значение AR(p) с номером можно записать в виде:
(32)
Подобранное значение с номером имеет вид:
(33)
где значение в (33) вычислено с помощью (32). Продолжая этот итеративный процесс, можно получить все значения при a также спрогнозировать дальнейшее поведение процесса, то есть вычислить значение и т.д. Если полученные остатки для ведут себя как белый шум, то процесс подбора модели можно считать завершенным. В противном случае, следует изменить порядок подбираемой модели или перейти к более сложным комбинированным моделям авторегрессии-скользящего среднего.
.4.4 Процессы скользящего среднего MA(q)
Аббревиатура МА в заголовке образована от английского названия этих процессов: moving average. Данное сокращение стандартно используется для этих процессов в литературе и статистических пакетах. Начнем с примера.
Пусть, как и ранее, обозначает процесс белого шума, . Белый шум можно понимать как в широком, так и в узком смысле. Соответственно в широком либо узком смысле окажутся стационарными далее вводимые случайные процессы X(t). Рассмотрим временной ряд, заданный соотношением
(34)
Очевидно, что Х(t) - стационарный процесс, причем , . Ясно, что траектории X(t) будут более гладкими, чем траектории белого шума st, так как корреляция между соседними членами процесса X(t) положительна:
Корреляция между более удаленными членами при этом равна 0:
для
Процесс (34) - простой пример процессов скользящего среднего. Дадим общее определение этих процессов.
Определение. Случайный процесс X(t) называется процессом скользящего среднего порядка q (кратко MA(q)), если для него выполняется соотношение:
(35)
Свойства. Очевидно, что MA(q) (35) - случайный стационарный процесс
Используя (35), нетрудно подсчитать, что для
(36)
и что для выполняется . Из этого последнего свойства следует, что автокорреляция rk обращается в нуль вне некоторого конечного участка:
для .
Это свойство автокорреляции хорошо различимо на ее графике. Оно позволяет уверенно различать процессы скользящего среднего, основываясь на графике выборочной автокорреляционной функции , если наблюдаемая траектория процесса достаточно велика.
Оценивание коэффициентов в (35) по наблюдаемому участку траектории может быть проведено, например, по обобщенному методу наименьших квадратов. Этот метод хорошо известен и реализован в любом статистическом пакете.
.4.5 Комбинированные процессы авторегрессии-скользящего среднего ARMA(p, q)
Происхождение аббревиатуры ARMA очевидно: она соединяет сокращения AR и МА, нам уже известные. Числа р и q указывают порядок процесса.
Определение. Случайный процесс X(t) называется процессом авторегрессии-скользящего среднего порядков р и q соответственно (кратко ARMA(p, q)), если для него выполняется соотношение:
(37)
где - процесс бело?/p>