А. С. Гринберг О. Б. Плющ Б. В. Новыш Теория вероятностей и математическая статистика Курс лекций
Вид материала | Курс лекций |
СодержаниеФормула сложения вероятностей Независимость событий |
- Рабочая программа дисциплины "теория вероятностей и математическая статистика", 112.61kb.
- Конспект лекций по курсу "Теория вероятностей и математическая статистика", 1417.24kb.
- Рабочая учебная программа дисциплины (модуля) Теория вероятностей и математическая, 217.23kb.
- Примерная программа наименование дисциплины «теория вероятностей и математическая статистика», 165.37kb.
- Рабочая программа учебной дисциплины теория вероятностей и математическая статистика, 830.1kb.
- Рабочая программа учебной дисциплины «Теория вероятностей и математическая статистика», 165.42kb.
- Программа курса лекций "Теория вероятностей и математическая статистика", 18.69kb.
- Примерная рабочая программа по дисциплине: «теория вероятностей, математическая статистика, 83.07kb.
- Программа по дисциплине «Теория вероятностей и математическая статистика» для студентов, 206.05kb.
- Программа дисциплины «теория вероятностей и математическая статистика» Для направления, 198.58kb.
Формула сложения вероятностей
Теорема: Вероятность суммы конечного числа несовместных событий равна сумме вероятностей этих событий:
.
Доказательство: Докажем эту теорему для случая суммы двух несовместных событий и .
Пусть событию благоприятствуют элементарных исходов, а событию – соответственно исходов. Так как события и по условию теоремы несовместны, то событию + благоприятствуют + элементарных исходов из общего числа исходов. Следовательно:
,
где – вероятность события ;
– вероятность события.
Теорема: Вероятность появления хотя бы одного из двух совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления:
.
Доказательство: Событие наступит, если наступит одно из несовместных событий , , . По теореме сложения вероятностей несовместных событий:
.
Событие произойдет, если наступит одно из двух несовместных событий: , . Вновь применяя теорему сложения вероятностей несовместных событий, получаем: . Следовательно, .
Аналогично для события получаем . Откуда .
Следовательно .
Независимость событий
Если при наступлении события вероятность события не меняется, то события и называются независимыми.
Теорема: Вероятность совместного появления двух независимых событий и (произведения и ) равна произведению вероятностей этих событий.
Доказательство: События и независимы, следовательно . В этом случае формула произведения событий и можно записать как .
События называются попарно независимыми, если независимы любые два из них.
События называются независимыми в совокупности, если каждое из этих событий и событие равное произведению любого числа остальных событий, независимы.
Теорема: Вероятность произведения конечного числа независимых в совокупности событий равна произведению вероятностей этих событий.
.