А. С. Гринберг О. Б. Плющ Б. В. Новыш Теория вероятностей и математическая статистика Курс лекций

Вид материалаКурс лекций

Содержание


Формула сложения вероятностей
Независимость событий
Подобный материал:
1   ...   4   5   6   7   8   9   10   11   ...   26

Формула сложения вероятностей


Теорема: Вероятность суммы конечного числа несовместных событий равна сумме вероятностей этих событий:

.

Доказательство: Докажем эту теорему для случая суммы двух несовместных событий и .

Пусть событию благоприятствуют элементарных исходов, а событию – соответственно исходов. Так как события и по условию теоремы несовместны, то событию + благоприятствуют + элементарных исходов из общего числа исходов. Следовательно:

,

где – вероятность события ;

– вероятность события.

Теорема: Вероятность появления хотя бы одного из двух совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления:

.

Доказательство: Событие наступит, если наступит одно из несовместных событий , , . По теореме сложения вероятностей несовместных событий:

.

Событие произойдет, если наступит одно из двух несовместных событий: , . Вновь применяя теорему сложения вероятностей несовместных событий, получаем: . Следовательно, .

Аналогично для события получаем . Откуда .

Следовательно .

Независимость событий


Если при наступлении события вероятность события не меняется, то события и называются независимыми.

Теорема: Вероятность совместного появления двух независимых событий и (произведения и ) равна произведению вероятностей этих событий.

Доказательство: События и независимы, следовательно . В этом случае формула произведения событий и можно записать как .

События называются попарно независимыми, если независимы любые два из них.

События называются независимыми в совокупности, если каждое из этих событий и событие равное произведению любого числа остальных событий, независимы.

Теорема: Вероятность произведения конечного числа независимых в совокупности событий равна произведению вероятностей этих событий.

.