А. С. Гринберг О. Б. Плющ Б. В. Новыш Теория вероятностей и математическая статистика Курс лекций
Вид материала | Курс лекций |
СодержаниеПростейшие свойства вероятностей Свойства условных вероятностей Формула полной вероятности. Формула Байеса Контрольные вопросы к теме №1 |
- Рабочая программа дисциплины "теория вероятностей и математическая статистика", 112.61kb.
- Конспект лекций по курсу "Теория вероятностей и математическая статистика", 1417.24kb.
- Рабочая учебная программа дисциплины (модуля) Теория вероятностей и математическая, 217.23kb.
- Примерная программа наименование дисциплины «теория вероятностей и математическая статистика», 165.37kb.
- Рабочая программа учебной дисциплины теория вероятностей и математическая статистика, 830.1kb.
- Рабочая программа учебной дисциплины «Теория вероятностей и математическая статистика», 165.42kb.
- Программа курса лекций "Теория вероятностей и математическая статистика", 18.69kb.
- Примерная рабочая программа по дисциплине: «теория вероятностей, математическая статистика, 83.07kb.
- Программа по дисциплине «Теория вероятностей и математическая статистика» для студентов, 206.05kb.
- Программа дисциплины «теория вероятностей и математическая статистика» Для направления, 198.58kb.
Простейшие свойства вероятностей
-
;
-
;
-
;
-
;
-
;
Свойства условных вероятностей
-
;
-
;
-
;
- если
, то
;
-
;
-
;
-
;
-
.
Формула полной вероятности. Формула Байеса
Предположим, что событие




В этом случае вероятность события


По теореме сложения вероятностей несовместных событий получаем


Полученная формула называется формулой полной вероятности.
Пусть событие










Например, очевидно, следует отбросить гипотезы, отрицающие появление события


На основании теоремы о вероятности произведения двух событий:

откуда:

или

Полученная формула носит название формулы Байеса.
Контрольные вопросы к теме №1
- Понятия детерминированного и случайного экспериментов.
- Понятие события, пространство элементарных событий.
- Совместимые и несовместимые события.
- Сумма и произведение событий.
- Алгебра и –алгебра.
- Разность и симметрическая разность событий.
- Классическое определение вероятности.
- Статистическое определение вероятности.
- Геометрическая вероятность.
- Невозможные и достоверные события и их вероятности.
- Аксиомы теории вероятностей.
- Понятие вероятности.
- Понятие вероятностного пространства.
- Понятие полной группы событий.
- Условная вероятность и ее свойства.
- Теоремы сложения вероятностей несовместных и совместных событий.
- Зависимые и независимые события.
- Простейшие свойства вероятностей.
- Формула полной вероятности события.
- Формула Байеса.