А. С. Гринберг О. Б. Плющ Б. В. Новыш Теория вероятностей и математическая статистика Курс лекций
Вид материала | Курс лекций |
СодержаниеПолная группа событий Условная вероятность Формула умножения вероятностей |
- Рабочая программа дисциплины "теория вероятностей и математическая статистика", 112.61kb.
- Конспект лекций по курсу "Теория вероятностей и математическая статистика", 1417.24kb.
- Рабочая учебная программа дисциплины (модуля) Теория вероятностей и математическая, 217.23kb.
- Примерная программа наименование дисциплины «теория вероятностей и математическая статистика», 165.37kb.
- Рабочая программа учебной дисциплины теория вероятностей и математическая статистика, 830.1kb.
- Рабочая программа учебной дисциплины «Теория вероятностей и математическая статистика», 165.42kb.
- Программа курса лекций "Теория вероятностей и математическая статистика", 18.69kb.
- Примерная рабочая программа по дисциплине: «теория вероятностей, математическая статистика, 83.07kb.
- Программа по дисциплине «Теория вероятностей и математическая статистика» для студентов, 206.05kb.
- Программа дисциплины «теория вероятностей и математическая статистика» Для направления, 198.58kb.
Полная группа событий
Множество попарно несовместных событий называют полной группой событий, если при любом исходе случайного эксперимента непременно наступает одно из событий, входящих в это множество. Другими словами, для полной группы событий

- появление одного из событий данного множества в результате испытания является достоверным событием, т.е. событие
;
- события
и
(
) попарно несовместимы и
– событие невозможное при любых
, т.е.
.
Простейшим примером полной группы событий является пара противоположных событий


Теорема. Сумма вероятностей событий полной группы


Условная вероятность
Во многих случаях вероятности появления одних событий зависят от того, произошло другое событие или нет.
Вероятность события




Вероятность каждого события в данном испытании связана с наличием известного комплекса условий. При определении условной вероятности мы полагаем, что в этот комплекс условий обязательно входит событие





В тех случаях, когда вероятность события






Формула умножения вероятностей
Теорема: Вероятность произведения двух событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную при условии, что первое событие имело место:

Доказательство: Предположим, что из










Произведению событий







Умножив числитель и знаменатель этой дроби на


Аналогично доказывается и формула

Теорему умножения вероятностей легко обобщить на любое конечное число событий.
Теорема: Вероятность произведения конечного числа событий равна произведению их условных вероятностей относительно произведения предшествующих событий:

Для доказательства этой теоремы можно использовать метод математической индукции.