А. С. Гринберг О. Б. Плющ Б. В. Новыш Теория вероятностей и математическая статистика Курс лекций

Вид материалаКурс лекций

Содержание


Алгебра событий
Противоположным (дополнительным)
Свойства операций над событиями
Алгебра и сигма-алгебра событий
Подобный материал:
1   2   3   4   5   6   7   8   9   ...   26

Алгебра событий

Операции над событиями (сумма, разность, произведение)


С каждым испытанием связан ряд интересующих нас событий, которые, вообще говоря, могут появляться одновременно. Например, при бросании игральной кости (т.е. кубика, на гранях которого имеются очки 1, 2, 3, 4, 5, 6) событие есть выпадение двойки, а событие – выпадение четного числа очков. Очевидно, что эти события не исключают друг друга.

Пусть все возможные результаты испытания осуществляются в ряде единственно возможных частных случаев, взаимно исключающих друг друга. Тогда:
  • каждый исход испытания представляется одним и только одним элементарным событием;
  • всякое событие , связанное с этим испытанием, есть множество конечного или бесконечного числа элементарных событий;
  • событие происходит тогда и только тогда, когда реализуется одно из элементарных событий, входящих в это множество.

Другими словами, задано произвольное, но фиксированное пространство элементарных событий , которое можно представить в виде некоторой области на плоскости. При этом элементарные события – это точки плоскости, лежащие внутри . Поскольку событие отождествляется с множеством, то над событиями можно совершать все операции, выполнимые над множествами. То есть, по аналогии с теорией множеств, строится алгебра событий. В частности, определены следующие операции и отношения между событиями:











(отношение включения множеств: множество является подмножеством множества ) событие A влечет за собой событие В. Иначе говоря, событие В происходит всякий раз, как происходит событие A.

(отношение эквивалентности множеств) событие тождественно или эквивалентно событию . Это возможно в том и только в том случае, когда и одновременно , т.е. каждое из них происходит всякий раз, когда происходит другое.

() сумма событий. Это событие, состоящее в том, что произошло хотя бы одно из двух событий или (не исключающее логическое «или»). В общем случае, под суммой нескольких событий понимается событие, состоящее в появлении хотя бы одного из этих событий.








() произведение событий. Это событие, состоящее в совместном осуществлении событий и (логическое «и»). В общем случае, под произведением нескольких событий понимается событие, состоящее в одновременном осуществлении всех этих событий. Таким образом, события и несовместны, если произведение их есть событие невозможное, т.е. .









(множество элементов, принадлежащих , но не принадлежащих ) разность событий. Это событие, состоящее из исходов, входящих в , но не входящих в . Оно заключается в том, что происходит событие , но при этом не происходит событие .








Противоположным (дополнительным) для события (обозначается ) называется событие, состоящее из всех исходов, которые не входят в .

Два события называются противоположными, если появление одного из них равносильно непоявлению другого. Событие , противоположное событию , происходит тогда и только тогда, когда событие не происходит. Другими словами, наступление события означает просто то, что событие не наступило.








Симметрическая разность двух событий и (обозначается ) называется событие, состоящее из исходов, входящих в или , но не входящих в и в одновременно.

Смысл события состоит в том, что наступает одно и только одно из событий или .

.

Обозначается симметрическая разность: или .

Свойства операций над событиями


Поскольку случайные события рассматриваются как множества, определенные на пространстве элементарных исходов , очевидно, что алгебраические свойства случайных событий вытекают из соответствующих свойств множеств:

























Приведенный список не исчерпывает всех свойств операций над событиями. В то же время из него видно, что основные действия над событиями, в частности, операции сложения (объединения) и умножения (пересечения), в определенном смысле аналогичны сложению и умножению чисел. Эти операции обладают свойствами коммутативности, ассоциативности и дистрибутивности. Для операции умножения событий роль, аналогичную роли единицы и нуля при умножении чисел, выполняют, соответственно, множества и . Вместе с тем, теоретико–множественные равенства 6, 6 и им подобные показывают, что полной аналогии нет.

Алгебра и сигма-алгебра событий


В случае конечной или счетной теоретико-вероятностной схемы в качестве события рассматривается любое подмножество конечного или счетного пространства элементарных событий . Если же пространство непрерывно, то имеет место континуум элементарных исходов. Попытка считать событием любое подмножество непрерывного пространства сопряжена с большими трудностями.

Поэтому в общем случае приходится иметь дело не со всеми подмножествами пространства , а лишь с определенным классом, замкнутым относительно операций суммы, произведения и дополнения.

Предположим, что является пространством всех элементарных исходов для какого-нибудь случайного эксперимента, каждому результату которого соответствует ровно одна точка из , а разным результатам соответствуют разные точки. Выделим некоторую совокупность случайных событий , определенных на пространстве элементарных исходов . Другими словами, выделим совокупность подмножеств множества . Причем, наложим условие, что содержит как случайные события , так и события, полученные в результате применения любой из описанных операций к любым элементам системы.

Совокупность случайных событий , определенных на пространстве элементарных исходов , называется алгеброй или булевой алгеброй – по имени английского математика Дж. Буля (1815 – 1864), если выполнены следующие условия:
  1. (алгебра событий содержит достоверное событие);
  2. Если , то для любых (вместе с любым конечным набором событий алгебра содержит и их сумму);
  3. Если , то (вместе с любым событием алгебра содержит противоположное событие).

Можно показать, в частности, что:, если и , то:
  • ;
  • .

Другими словами, оказывается, что условий 1 – 3 достаточно для того, чтобы любое конечное число других операций над случайными событиями не выводило бы нас за пределы алгебры . Таким образом, алгебра множеств – это система подмножеств некоторого множества , замкнутая относительно операций суммы (объединения), произведения (пересечения) и дополнения.

Очевидно, что одно и то же множество порождает различные алгебры. Самая «бедная» алгебра состоит из двух множеств – пустого множества и множества :

.

В понятиях теории вероятностей это соответствует невозможному и достоверному событиям. Любое подмножество порождает четырехэлементную алгебру:



Для экспериментов с конечным числом исходов множество–степень множества , т.е. совокупность всех подмножеств , включающая пустое множество , составляет алгебру , причем это самая «богатая» алгебра, порождаемая множеством . Поэтому для таких экспериментов любое подмножество множества может интерпретироваться как наблюдаемое событие, а все события, связанные с пространством элементарных исходов , образуют алгебру наблюдаемых случайных событий.

Под наблюдаемым событием понимается такое подмножество множества , которое одновременно принадлежит и булевой алгебре . Таким образом, класс наблюдаемых в данном эксперименте событий, вообще говоря, ỳже класса всех подмножеств множества . Если, например, , но , то событие по определению не наблюдаемо в данном эксперименте. Такое определение наблюдаемого события согласуется с введенным ранее эмпирическим понятием случайного события, как наблюдаемого результата эксперимента.

При рассмотрении многих задач теории вероятностей приходится иметь дело и с бесконечным числом операций. Для того, чтобы можно было рассматривать бесконечное число операций над событиями, необходимо усилить ограничения, налагаемые на алгебру .

Система подмножеств множества , называется -алгеброй, а соответствующее множество событий  борелевским, если она удовлетворяет следующим условиям:
  1. (–алгебра событий содержит достоверное событие);
  2. Если , то для любых (вместе с любым конечным или счетным набором событий –алгебра содержит и их сумму);
  3. Если , то (вместе с любым событием –алгебра содержит противоположное событие).

Условие 2 для алгебры является следствием условия 2 для –алгебры, поэтому требования для –алгебры более сильные.

Используя условие 3 и равенство , легко убедиться в справедливости следующего утверждения.

Пусть – –алгебра. Тогда, если , то для любых .

Таким образом, счетное число операций суммирования или перемножения событий не выводит за пределы –алгебры.

Вообще говоря, действия над событиями важны не сами по себе, а как средство определения вероятностей одних событий через вероятности других событий. Далее будет введена вероятность случайного события как функция, заданная на подмножествах пространства . Прежде, чем определять эту функцию, следует задать область определения этой функции. Поскольку эта функция задается для всех наблюдаемых событий, связанных с пространством элементарных исходов , то функция должна быть определена на системе подмножеств пространства , которая является –алгеброй. Поэтому разумно поставить следующее условие: если известны вероятности событий и , то должны быть определены правила вычисления вероятностей событий , , а также вероятности противоположных событий и .