От лат cavitas пустота), образование в капельной жидкости полостей, заполненных газом, паром или их смесью (т н. кавитац пузырьков или каверн). Кавитац
Вид материала | Документы |
- Вывихи. Переломы, 241.71kb.
- От лат evaporo испаряю и греч grapho пишу), метод получения изображений объектов, 2696.94kb.
- Реферат от лат rеfеrо "сообщаю", 198.27kb.
- Абсцесс и гангрена легкого определение заболевания острый абсцесс легкого, 403.26kb.
- Перелом подвздошной кости; перелом вертлужной впадины; перелом лобковой кости; открытая, 1124.91kb.
- Вишнев В. Н. Безродная Н. В. Остеохондроз Профилактика и лечение Введение, 623.65kb.
- Реферат от лат. «сообщать», 61.18kb.
- Лекция. Взаимосвязанные рынки, 285.49kb.
- Реферат Реферат, 36.91kb.
- Предыстория или как мне удалось получить музыкальное образование и чем это обернулось, 2157.21kb.
Рис. 2. Пучок атомов Cs в неоднородном магн. поле H1; 1 — сечение пучка; атомы летят в направлении, перпендикулярном плоскости рис.; 2 — силовые линии поля; 3 — полюсные наконечники.
272
только атомы с энергией, соответствующей одному из пары уровней ξ1ξ2, отклоняя в сторону атомы с энергией, соответствующей другому уровню. В промежутке между полями h1 и Н2 атомы пролетают через объёмный резонатор, в к-ром возбуждаются эл.-магн. колебания частоты, отвечающей переходам ξ1ξ2. Если под влиянием эл.-магн. поля атом Cs с энергией ξ1 перейдёт в состояние ξ2 или атом с энергией ξ2 в состояние ξ1 то поле Н2 направит их от детектора, ток детектора уменьшится на величину, пропорц. числу атомов, совершивших переход (возможна и др. настройка системы, когда резонансу соответствует максимум тока детектора). В цезиевом стандарте используются переходы атома Cs между магн. подуровнями. Переходы такого типа не могут наблюдаться вне постоянного однородного магн. поля Н, причём частота переходов зависит от напряжённости поля Н.
Число атомов, совершающих вынужденный переход в ед. времени под действием поля, максимально, если частота действующего на атом эл.-магн поля точно совпадает с частотой перехода. По мере несовпадения (расстройки) этих частот число атомов, совершающих вынужденные переходы, уменьшается. Поэтому, плавно меняя частоту эл.-магн. поля и откладывая по горизонтали частоту , а по вертикали — изменение тока детектора I, получим контур спектр, линии, соответствующий переходам ξ1ξ2, ξ2ξ1 (рис. 3, а).
Рис. 3. Форма спектр. линии: а — неискажённой, б — наблюдаемой в случае П-образного резонатора.
Частота 0, соотв. вершине спектр. линии, явл. опорной точкой (репером) на шкале частот, а соответствующий ей период колебаний принят равным 1/9192631777,0 с. Точность определения 0 порядка неск. % (в лучшем случае — доли %) от ширины линии . Точность тем выше, чем уже спектр, линия; отсюда стремление устранить или ослабить все причины, приводящие к уширению используемых спектр. линий. В цезиевых стандартах уширение спектр. линии обусловлено временем вз-ствия атомов с эл.-магн. полем резонатора; чем меньше время, тем шире линия (см. Неопределённостей соотношения, Ширина спектральных линий). Время вз-ствия совпадает со временем пролёта атома через резонатор; оно пропорц. длине резонатора и обратно пропорц. скорости атомов. Уменьшать скорость атомов, понижая темп-ру, невозможно, т. к. при этом падает интенсивность пучка. Длина резонатора также не может быть
сделана очень большой из-за рассеяния атомов и вследствие того, что пучок должен находиться в однородном (по величине и направлению) поле Н, что в большом объёме затруднительно.
Преодоление этой трудности и получение узкой спектр. линии достигается применением резонатора П-образной формы (рис. 4). В этом резонаторе пучок взаимодействует с эл.-магн. полем только вблизи его концов и только в этих двух небольших областях необходима однородность и стабильность магн. поля Н. В таком резонаторе спектр. линия приобретает более сложную форму (рис. 3, б), к-рая явл. результатом наложения двух линий, образованных пролётом ч-ц через каждый из концов резонатора. Ширина каждой линии велика. Эта суммарная ширина образует «пьедестал» результирующей линии. Ширина же узкой линии (центр пика), определяющая точность измерения, зависит от полного времени пролёта через резонатор.
Цезиевый стандарт обычно дополняют устройствами, вырабатывающими определённый набор частот, стабильность к-рых равна стабильности стандарта, а иногда и сигналы точного времени (см. Квантовые часы).
Цезиевые К. с. ч. входят в состав нац. эталонов частоты и времени и обеспечивают воспроизведение длительности секунды, а следовательно всей системы измерения частоты и времени с относит. погрешностью, меньшей чем 10-13. Их преимущество состоит в том, что вторичные цезиевые стандарты (серийное производство) не уступают по точности эталону. Даже малогабаритные цезиевые трубки для лаб. практики и на подвижных объектах работают с относит. погрешностью ~10-11—10-12.
Наиболее важный активный К. с. ч.— водородный квант. генератор. Пучок атомов водорода выходит из источника (где при низком давлении под влиянием электрич. разряда молекулы водорода расщепляются
на атомы) в установку в виде узкого пучка (рис. 5). Пучок пролетает между полюсными наконечниками многополюсного магнита 2. Неоднородное магн. поле фокусирует к оси пучка атомы, находящиеся в возбуждённом состоянии, и разбрасывает в стороны атомы, находящиеся в осн. состоянии (см. выше). Возбуждённые атомы пролетают через отверстие в кварцевую колбу 4, находящуюся внутри объёмного резонатора 3, в к-ром возбуждается эл.-магн. поле с частотой, соответствующей переходу атомов из возбуждённого состояния в основное.
Рис. 4. Цезиевая трубка с П-образным резонатором (обозначения те же, что и на рис. 1).
Фотоны, излучаемые атомами водорода, при переходе в основное состояние в течение значит. времени (определяемого добротностью резонатора) остаются внутри него, что создаёт обратную связь, необходимую для самовозбуждения квант. генератора. Однако достижимые добротность резонаторов и интенсивность пучков атомов водорода всё же недостаточны для самовозбуждения генератора. Поэтому стенки кварцевой колбы покрывают изнутри тонким слоем фторопласта (тефлона). Возбуждённые атомы водорода могут ударяться о плёнку тефлона ~104 раз, не потеряв при этом свою избыточную энергию.
Рис. 5. Устройство водородного генератора: 1 — источник пучка; 2 — сортирующая система (многополюсный магнит); 3 — резонатор; 4 — накопительная колба.
В колбе скапливаются возбуждённые атомы Н, и ср. время пребывания каждого из них в резонаторе увеличивается примерно до 1 с. Этого достаточно для возбуждения генерации (см. Квантовая электроника). Колба, размеры к-рой выбираются меньшими, чем генерируемая длина волны = 21 см, играет ещё одну важную роль. Хаотич. движение атомов водорода внутри колбы должно было бы привести к уширению спектр. линии из-за Доплера эффекта. Однако, если движение атомов ограничено объёмом, размеры к-рого < спектр. ли-
273
ния приобретает вид узкого пика, возвышающегося над широким низким пьедесталом. В результате в водородном генераторе ширина спектр. линии =1 Гц.
Чрезвычайно малая ширина спектр. линии обеспечивает малую погрешность частоты водородного генератора (в пределах 13-го знака). Частота излучения водородного генератора, измеренная цезиевым эталоном, равна 1420405751,7860 ±0,0046 Гц. Мощность мала (~10-12 Вт). Поэтому К. с. ч. на основе водородного генератора содержат чувствительный приёмник.
Оба описанных К. с. ч. работают в диапазоне СВЧ. Известны др. атомы и молекулы, спектр. линии к-рых позволяют создавать активные и пассивные К. с. ч. радиодиапазона. Они не нашли практич. применения. Лишь К. с. ч. на атомах 87Rb с оптич. накачкой применяются в качестве вторичного стандарта частоты в лаб. практике, в системах радионавигации и в службе времени.
К. с. ч. оптич. диапазона представляют собой лазеры, в к-рых приняты спец. меры для стабилизации частоты их излучения. В оптич. диапазоне доплеровское уширеиие спектр. линий очень велико, и из-за малости подавить его так, как это делается в водородном генераторе, не удаётся. Создать эфф. лазер на пучках атомов или молекул пока также не удаётся. Т. к. в пределах доплеровской ширины спектр. линии помещается неск. относительно узких резонансов оптич. резонатора, то частота генерации подавляющего большинства лазеров определяется не столько частотой используемой спектр. линии, сколько размерами резонатора. У оптич. К. с. ч. наименьшая относит. погрешность частоты (~10-13) достигнута с помощью гелий-неонового лазера, генерирующего на волне =3,39 мкм (см. Оптические стандарты частоты).
• Время и частота, пер. с англ., М., 1973; л ь и н В. Г., С а ж и н В. В., Новый Государственный эталон времени и частоты СССР, «Природа», 1977, № 8.
М. Е. Жаботинский.
КВАНТОВЫЕ ЧАСЫ (атомные часы), устройство для точного измерения времени, основной частью к-рого является квантовый стандарт частоты. Ход К. ч. регулирует частота излучения атомов при их квант. переходах из одного энергетич. состояния в другое. Эта частота столь стабильна при определённых внеш. условиях, что К. ч. позволяют измерять время точнее, чем астр. методы (см. Времени измерение). К. ч. применяются в службе времени, системах радионавигации, в астр. обсерваториях, лаб. практике и т. п., вытесняя менее совершенные кварцевые часы.
Сигналы квант. стандартов частоты непосредственно не могут быть использованы для приведения в действие часового механизма, т. к. мощность этих сигналов ничтожна, а частота колебаний, как правило, высока и имеет нецелочисленное значение (напр., мощность водородного генератора составляет 10-11— 10-12 Вт, а частота 1420,406 МГц). Для практич. применений нужен набор стандартных высокостабильных частот (1 кГц, 10 кГц, 100 кГц, 1 МГц и т. д.) при достаточной мощности выходного сигнала.
Поэтому К. ч., помимо квант. стандарта частоты (репера), содержат спец. электронные устройства, формирующие сетку частот, обеспечивающие действие часового механизма (вращение стрелок часов или смену цифр на их циферблате) и выдачу сигналов точного времени.
Большинство К. ч. содержит кварцевый генератор, частота к-рого контролируется с помощью репера; периодически вносятся поправки, благодаря чему точность кварцевых часов повышается до уровня точности самого репера. Для нек-рых систем (в частности, навигационных) более рациональна автоматич. подстройка частоты кварцевого генератора к частоте репера. В одном из вариантов такой системы (фазовая автоподстройка, рис. 1) частота кв кварцевого генератора (обычно ~10—20 МГц) умножается в нужное число (n) раз и в смесителе вычитается из частоты репера р. Подбором кв и n можно добиться, чтобы разностная частота =р=nкв=кв. Сигнал разностной частоты после усиления поступает на первый вход фазового детектора, на др. вход к-рого подаются колебания кварцевого генератора. Фазовый детектор вырабатывает напряжение, величина и знак к-рого зависят от разности фаз сигналов на его входе. Это напряжение подаётся на блок управления кварцевым генератором и вызывает сдвиг фазы колебаний генератора, к-рый препятствует отклонению кв от разностной частоты . Т. о., любое изменение кв вызывает появление на выходе блока управления напряжение соответствующей величины и знака, сдвигающего кв в обратном направлении. Частота генератора автоматически поддерживается неизменной. Стабильность частоты кварцевого генератора становится практически равной стабильности частоты репера. Т. н. синтезатор частот формирует из сигнала кварцевого генератора сетки столь же точных
стандартных частот. Одна из них служит для питания электрич. часов, а остальные используются для метрологич. и др. целей. Погрешность хода лучших К. ч. такого типа ~1с за неск. тыс. лет.
Первые К. ч. были созданы в 1957 в Нац. бюро стандартов США. Репером в них служил квант. генератор на пучке молекул аммиака (молекулярный генератор). В совр. К. ч. иногда используется цезиевый репер. Такие К. ч. не нуждаются в калибровке по эталону, т. к. номинальное значение опорной частоты может быть установлено на основе манипуляций в самом приборе. Их недостаток — сравнительно большой вес и чувствительность к вибрациям. Более распространены К. ч. с рубидиевым репером и оптич. накачкой. Они легче, компактнее, не боятся вибраций, но нуждаются в калибровке, после чего они поддерживают установленное значение частоты с относит. погрешностью ~10-11 в год.
Рис. 2. Схема рубидиевого стандарта частоты с оптич. накачкой: рубидиевая лампа низкого давления 1 освещает колбу 2, наполненную парами 87Rb; 3 — объёмный резонатор; 4 — фотодетектор; 5 — усилитель низкой частоты; 6 — фазовый детектор; 7 — генератор низкой частоты; 8 — кварцевый генератор; 9 — умножитель частоты.
Осн. часть рубидиевых К. ч.— объёмный резонатор, в к-ром находится колба с парами 87Rb (рис. 2) при давлении р~10-3 мм рт. ст. Ре-
274
зонатор настроен на частоту определённой радиоспектральной линии 87Rb (0=6835 МГц). Однако чувствительность радиоспектроскопа недостаточна, чтобы зафиксировать эту линию. Для увеличения чувствительности используются оптическая накачка паров 87Rb и оптич. индикация спектральной линии. Колбу освещают,
Рис. 3. Уровни энергии атомов 87Rb, используемые в рубидиевых часах.
причём частота света совпадает с частотой др. спектральной линии 87Rb, лежащей в оптич. диапазоне (газоразрядная лампа с парами 87Rb). Свет, прошедший сквозь колбу, попадает на фотоприёмник (напр., фотоэлектронный умножитель). Под действием света рубидиевой лампы атомы 87Rb возбуждаются, т. е. переходят из состояния с энергией ξ2 в состояние ξ3 (рис. 3). Если интенсивность света достаточно высока, то наступает насыщение (кол-во атомов, находящихся в состояниях ξ2 и ξ3, выравнивается). При этом поглощение света в парах уменьшается, и они под действием света становятся более прозрачными. Если одновременно с оптич. накачкой пары 87Rb облучить радиоволной с частотой 0, то атомы 87Rb перейдут с уровня ξ1 на уровень ξ2, в результате чего поглощение света в парах 87Rb увеличится. Источником радиоволны служит кварцевый генератор 8, возбуждающий в резонаторе эл.-магн. поле. При плавном изменении частоты генератора в момент =0 интенсивность света, попадающего на фотоприёмник, резко уменьшится.
Зависимость интенсивности света, прошедшего через пары 87Rb, от частоты радиоволны используется для автоматич. подстройки частоты колебаний кварцевого генератора по частоте радиоспектральной линии 87Rb. Колебания кварцевого генератора модулируются по фазе при помощи вспомогат. генератора низкой частоты 7 (см. Модуляция колебаний). Свет, проходящий через колбу, оказывается модулированным по интенсивности той же низкой" частотой. Электрич. сигнал фотоприёмника после усиления подаётся на фазовый детектор 6, на к-рый поступает также сигнал непосредственно от низкочастотного генератора. Амплитуда выходного сигнала фазового детектора тем больше, чем меньше расстройка частот спектральной линии и поля резонатора. Этот сигнал подаётся на элемент, изменяющий частоту кварцевого генератора, и поддерживает её значение таким, чтобы оно точно совпадало с вершиной спектральной линии 87Rb.
Точность рубидиевых К. ч. определяется гл. обр. шириной радиоспектральной линии 87Rb. Осн. причина уширения — Доплера эффект. Для уменьшения его влияния в колбу с парами 87Rb добавляется буферный газ (при давлении неск. мм рт. ст.). В результате спектральная линия приобретает вид узкого пика на широком низком пьедестале.
Точность рубидиевых К. ч. обусловлена также постоянством интенсивности света лампы (применяется автоматич. регулирование интенсивности). Возможно создание рубидиевых К. ч., в к-рых вместо оптич. индикации применяется квант. генератор на парах 87Rb. В этих К. ч. необходима интенсивная оптич. накачка и резонатор со столь высокой добротностью, чтобы выполнялись условия самовозбуждения. При этом пары 87Rb в колбе внутри резонатора излучают эл.-магн. волны на частоте 0. Радиосхема таких К. ч. также содержит кварцевый генератор и синтезатор, но, в отличие от предыдущего, частота кварцевого генератора управляется системой фазовой автоподстройки, в которой опорной является частота сигнала рубидиевого генератора.
• См. лит. при ст. Времени измерение и Квантовые стандарты частоты.
М. Е. Жаботинский.
КВАНТОВЫЕ ЧИСЛА, целые или дробные числа, к-рые определяют возможные значения физ. величин, характеризующих квант. системы (ат. ядро, атом, молекулу и др.), отд. элем. ч-цы, гипотетич. ч-цы кварки и глюоны.
К. ч. были впервые введены в физику для описания найденных эмпирически закономерностей ат. спектров, однако смысл К. ч. и связанной с ними дискретности нек-рых физ. величин, характеризующих поведение микрочастиц, был раскрыт лишь квант. механикой. Согласно квант. механике, возможные значения физ. величин определяются собств. значениями соответствующих операторов — непрерывными или дискретными; в последнем случае и возникают нек-рые К. ч. (В несколько ином смысле К. ч. иногда называют величины, сохраняющиеся в процессе движения, но не обязательно принадлежащие дискр. спектру возможных значений, напр. импульс или энергию свободно движущейся ч-цы.)
Набор К. ч., исчерпывающе определяющий состояние квант. системы, наз. полным. Совокупность состояний, отвечающая всем возможным значениям К. ч. из полного набора, образует полную систему состояний. Состояние эл-на в атоме определяется четырьмя К. ч. соответственно четырём степеням свободы эл-на, связанным с тремя пространств. координатами и спином. Для атома водорода и водородоподобных атомов это: главное К. ч. (n), орбитальное К. ч. (l), магнитное К. ч. (ml), магнитное спиновое, или просто спиновое, К. ч. (ms).
При учёте спин-орбитального взаимодействия (определяющего тонкую структуру уровней энергии) для хар-ки состояния эл-на вместо ml и ms применяют К. ч. полного момента количества движения (j) и К. ч. проекции полного момента (ту). Те же К. ч. приближённо описывают состояния отд. эл-нов в сложных (многоэлектронных) атомах, а также состояния отд. нуклонов в ат. ядрах (см. Атом, Ядро атомное).
Для хар-ки состояния атома и др. квант. систем вводят ещё одно К. ч.— чётность состояния (Р), к-рое принимает значения +1 и -1 в зависимости от того, сохраняет волн. ф-ция, определяющая состояние системы, знак при инверсии координат (r-r) или меняет его на обратный. Для атома водорода Р=(-1)l.
Существование сохраняющихся (неизменных во времени) физ. величин тесно связано со св-вами симметрии гамильтониана данной системы. Напр., гамильтониан для ч-цы, движущейся в центрально-симметричном поле, не меняет своего вида при произвольных поворотах системы координатных осей; этой симметрии отвечает сохранение момента кол-ва движения. Более точно, в таком поле сохраняющимися величинами, к-рые могут одновременно иметь определ. значения, явл. квадрат момента кол-ва движения и одна из проекций момента, задаваемые К. ч. l и ml. Применение определ. К. ч. для описания состояний системы взаимодействующих ч-ц отражает св-ва симметрии этого вз-ствия. Если на систему, имеющую нек-рую симметрию, накладывается дополнительное вз-ствие, к-рое такой симметрией не обладает, то соответствующие К. ч. будут определ. образом изменяться в процессе эволюции системы. Так, вз-ствие атома с эл.-магн. волной приводит к изменению перечисленных выше К. ч. согласно отбора правилам.
Помимо К. ч., ассоциируемых с пространственно-временными симметриями гамильтониана, важную роль играют т. н. внутренние К. ч. элем. ч-ц, к-рые не сказываются на поведении изолированной ч-цы, однако проявляются во вз-ствиях ч-ц. Разл. типы вз-ствия характеризуются разными св-вами симметрии, вследствие чего К. ч., сохраняющиеся в одних вз-ствиях, могут изменяться в других. Строго сохраняющимися К. ч. явл. электрический заряд (Q); с хорошей степенью точности сохраняются барионный заряд (В) и лептонный заряд (L). Другие внутр. К. ч. сохраняются при одних вз-ствиях и не сохраняются при других. Наиболее важные из них: изотопический спин (I, см. Изотопическая инвариант-
275
ность), к-рый сохраняется в процессах сильного вз-ствия и нарушается эл.-магн. и слабым вз-ствиями; странность (S), «очарование» (С) и «красота» (b), которые сохраняются в сильном и электромагнитном взаимодействиях, но нарушаются слабым вз-ствием. Кваркам и глюонам приписывается К. ч. «цвет», к-рое может принимать для кварков три значения, а для глюонов — восемь. Все наблюдавшиеся элем. ч-цы явл. «белыми» («бесцветными»), т. е. составленными из пар или троек кварков с суммированием по трём «цветам». Это К. ч. явл. весьма важным для понимания динамики сильного вз-ствия в рамках т. н. квантовой хромодинамики (см. также Квантовая теория поля).
Д. В. Гальцов.