От лат cavitas пустота), образование в капельной жидкости полостей, заполненных газом, паром или их смесью (т н. кавитац пузырьков или каверн). Кавитац
Вид материала | Документы |
- Вывихи. Переломы, 241.71kb.
- От лат evaporo испаряю и греч grapho пишу), метод получения изображений объектов, 2696.94kb.
- Реферат от лат rеfеrо "сообщаю", 198.27kb.
- Абсцесс и гангрена легкого определение заболевания острый абсцесс легкого, 403.26kb.
- Перелом подвздошной кости; перелом вертлужной впадины; перелом лобковой кости; открытая, 1124.91kb.
- Вишнев В. Н. Безродная Н. В. Остеохондроз Профилактика и лечение Введение, 623.65kb.
- Реферат от лат. «сообщать», 61.18kb.
- Лекция. Взаимосвязанные рынки, 285.49kb.
- Реферат Реферат, 36.91kb.
- Предыстория или как мне удалось получить музыкальное образование и чем это обернулось, 2157.21kb.
из вакуума др. пары qq~, «обесцвечивающие» разлетающиеся кварки и превращающие их в две струи адронов (рис. 3). Однако к.-л. доказательства этого механизма в КХД отсутствуют. Др. надежда на объяснение невылетания «цветных» кварков и глюонов связана с необходимостью перестройки вакуума вследствие того, что обычная для квант. теории поля гипотеза о «выключении» вз-ствия на бесконечности в КХД может оказаться неверной, т. к. приводит к кардинальному изменению хар-ра калибровочной симметрии теории (из-за того, что глюоны становятся свободными).
Убывание эфф. заряда (1) с ростом переданного импульса вместе с ростом эфф. заряда в объединённой теории эл.-магн. и слабого вз-ствий (см. Слабое взаимодействие) даёт основание надеяться на объединение всех трёх вз-ствий в рамках единой калибровочной теории в области импульсов, в к-рой эфф. заряды станут одинаковыми. В наиб. распространённом варианте это соответствует энергии 1014—1016 ГэВ (см. «Великое объединение»}.
• Г л э ш о у Ш., Кварки с цветом и ароматом, [пер. с англ.], «УФН», 1976, т. 119, в. 4, с. 715; Нам б у Й., Почему нет свободных кварков, [пер. с англ.], там же, 1978, т. 124, в. 1, с. 147.
А. В. Ефремов.
КВАНТОВАЯ ЭЛЕКТРОДИНАМИКА (КЭД), квантовая теория взаимодействующих эл.-магн. полей и заряж. ч-ц. Часто КЭД называют ту часть квант. теории поля, в к-рой рассматривается вз-ствие эл.-магн. и электронно-позитронного полей. Эл.-магн. поле в такой теории появляется как калибровочное поле. Квантом этого поля явл. фотон — ч-ца с нулевой массой покоя и спином 1, а вз-ствие двух эл-нов есть результат обмена между ними виртуальными фотонами. Безразмерной константой, характеризующей интенсивность взаимодействия, явл. постоянная тонкой структуры =e2/ћcI/137 [точнее, -1=137,035987(29)]. Благодаря малой величине а осн. расчётным методом в КЭД явл. возмущений теория, наглядное графич. изображение к-рой дают Фейнмана диаграммы.
Правильность КЭД подтверждена громадным числом экспериментов во всём доступном интервале расстояний (энергий), начиная от космических — 1020 см и вплоть до внутри-частичных — 10-16 см. КЭД описывает такие процессы, как тепловое излучение тел, Комптона эффект, тормозное излучение и др. Однако наиб. характерными для КЭД явл. процессы, связанные с поляризацией вакуума.
Первый наблюдённый эффект КЭД — лэмбовский сдвиг уровней анергии. С рекордной точностью вычисляется и т. н. аномальный магн. момент эл-на. Магн. момент — величина, обусловливающая вз-ствие покоящейся ч-цы с внеш. магн. полем. Из квант. теории эл-на Дирака следует, что эл-н должен обладать магн. моментом, равным магнетону Бора: Б= ећ/2mc (где m — масса эл-на). В КЭД поправки, появляющиеся в выражении для энергии такого вз-ствия, естественно интерпретировать как результат появления «вакуумных» добавок к магн. моменту (см. Квантовая теория поля). Эти добавки, впервые теоретически исследованные амер. физиком Ю. Швингером, и наз. аномальным магн. моментом. Вычисленное значение магн. момента эл-на
теор=Б[1+/2-0,328478(/)2+1,184175(/)3=1,00115965236(28)Б
находится в прекрасном согласии с экспериментальным значением: эксп=1,00115965241(21)б.
Характерным эффектом КЭД явл. рассеяние света на свете. В классич. электродинамике этот эффект отсутствует: эл.-магн. волны рассматриваются в ней как невзаимодействующие. В КЭД эффект становится возможным благодаря вз-ствию с флуктуациями электрон-позитронного вакуума.
Диаграмма Фейнмана, изображённая на рис., соответствует след. процессу. В нач. состояния — два фотона (волнистые линии); один из них в точке 1 исчезает, породив виртуальную электрон-позитронную пару (сплошные линии); второй фотон в точке 2 поглощается одной из ч-ц этой пары (на приведённой диаграмме — позитроном). Затем появляются конечные фотоны: один рождается в точке 4 виртуальным эл-ном, другой возникает в результате аннигиляции виртуальной пары электрон-позитрон в точке 3. Благодаря виртуальным электрон-позитронным парам появляется вз-ствие между фотонами, т. е. принцип суперпозиции эл.-магн. волн нарушается. Это должно проявляться в таких процессах, как рассеяние света на свете. Экспериментально наблюдался имеющий несколько большую вероятность процесс рассеяния фотонов на внеш. электростатич. поле тяжёлого ядра, т. е. на виртуальных фотонах (т. н. дельбрюковское рассеяние). «Высшие» (радиационные) поправки, вычисляемые по методу возмущений, появляются также в процессах рассеяния заряж. ч-ц и в нек-рых др. явлениях.
Ещё один класс «вакуумных» эффектов, предсказываемых теорией,— рождение пар частиц-античастиц в очень сильных (как статических, так и переменных) эл.-магн. и гравитац. полях. Последние обсуждаются, в частности, в связи с космологич. проблемами, связанными с ранними фазами эволюции Вселенной (рождение пар в гравитационном поле чёрных дыр).
Интересен в принципиальном отношении процесс аннигиляции электрон-позитронной пары в виртуальный фотон, к-рый далее превращается в нуклон-антинуклонную пару или в др. адроны. Этот процесс — пример тесного переплетения физики лептонов и адронов. Важность анализа такого рода процессов особенно возросла после появления экспериментов на встречных электрон-позитронных пучках.
В наст. время КЭД рассматривается как составная часть единой теории слабого и эл.-магн. вз-ствий (см. Слабое взаимодействие).
• Фейнман Р., Квантовая электродинамика, пер. с англ., М., 1964; Вайнберг С., Свет как фундаментальная частица, [пер. с англ.], «УФН», 1976, т. 120, в. 4, с. 677; Электромагнитные взаимодействия и структура элементарных частиц. Сб. статей, пер. с англ., М., 1969; Физики о физике (Элементарные частицы). Сб., М., 1977.
А. В. Ефремов.
КВАНТОВАЯ ЭЛЕКТРОНИКА, область физики, изучающая методы усиления и генерации эл.-магн. колебаний и волн, основанные на использовании вынужденного излучения, а также св-ва квант. усилителей и генераторов и их применения. Практич. интерес к оптич. квант. генераторам— лазерам обусловлен тем, что их излучение обладает высокой степенью направленности и монохроматичности, а также значительной интенсивностью. Квант. генераторы радиодиапазона отличаются от др. радиоустройств высокой стабильностью частоты генерируемых колебаний, а квант. усилители радиоволн — предельно низким уровнем шумов.
Физические основы. Эл.-магн. волны могут испускаться атомами, молекулами и др. квант. системами, обладающими нек-рой избыточной внутр. энергией (возбуждёнными). Переход атома с более высокого уровня энергии ξ2 на более низкий ξ1 может сопровождаться испусканием кванта излучения частоты , определённой соотношением:
=(ξ2-ξ1)/ћ. (1)
Переход с нижнего уровня ξ1 на верхний ξ2 может происходить при поглощении кванта той же частоты.
Рис. 1. a — спонтанное излучение фотона; б — вынужденное излучение; в — резонансное поглощение; ξ1 и ξ2 — уровни энергии атома.
Возбуждённые ч-цы могут отдавать свою энергию в виде эл.-магн. квантов двумя способами — самопроизвольно (спонтанное излучение, рис. 1, а) и под воздействием внешнего излучения, если его частота удовлетворяет ус-
270
ловию (1) (рис. 1, б). Вероятность вынужденного испускания, предсказанного А. Эйнштейном в 1916, пропорц. интенсивности вынуждающего излучения и может превосходить вероятность спонтанного процесса. Существенно, что кванты вынужденного излучения неотличимы от первичных. Они обладают такой же частотой, фазой, поляризацией и направлением распространения (А. Эйнштейн, П. Дирак, 1927). Это имеет основополагающее значение для К. э., т. к. формируется эл.-магн. волна, являющаяся точной, только усиленной, копией исходной волны. С ростом числа актов вынужденного испускания интенсивность волны возрастает, а её частота, фаза, поляризация и направление распространения остаются неизменными. Происходит когерентное усиление эл.-магн. излучения. В К. э. в отличие от традиционной электроники реализуется метод прямого усиления эл.-магн. полей без их преобразования в процессе усиления в потоки заряженных ч-ц.
Для одной ч-цы вынужденные переходы с уровня ξ2 на ξ 1 (испускание фотона, рис. 1, б) и с нижнего на верхний (поглощение рис. 1, в) равновероятны. Поэтому когерентное усиление волны возможно только при превышении числа возбуждённых ч-ц над невозбуждёнными. В условиях термодинамич. равновесия верхние уровни энергии населены ч-цами меньше, чем нижние, в соответствии с Больцмана распределением. Состояние вещества, при к-ром хотя бы для двух уровней энергии ч-ц верхний уровень оказался населённым сильнее, чем нижний, наз. состоянием с инверсией населённостей, а само вещество — активной средой. В К. э. используются разл. активные среды для усиления и генерации эл.-магн. волн.
Необходимую для возбуждения генерации положит. обратную связь осуществляет объёмный резонатор, в к-рый помещается активная среда. В какой-то точке резонатора неизбежно происходит спонтанный переход ч-цы активной среды с верхнего уровня на нижний, т. е. самопроизвольно испускается фотон. Если резонатор настроен на частоту этого фотона, то фотон не выйдет из резонатора, а многократно отражаясь от его стенок, в свою очередь, будет воздействовать на активное вещество, вызывая всё новые акты вынужденного испускания таких же фотонов (обратная связь). В результате в резонаторе накапливается эл.-магн. энергия, часть к-рой можно вывести наружу. Если в какой-то момент мощность вынужденного излучения превысит мощность потерь энергии на нагрев стенок резонатора, рассеяние излучения и т. п., а также на полезное излучение во внешнее пространство, то в резонаторе возбуждается генерация. Частота колебаний с высокой степенью точности совпадает с частотой со перехода возбуждённых ч-ц. Интенсивность генерации определяется числом возбуждённых ч-ц в 1 с в каждом см3 активной среды. Если скорость образования таких ч-ц см-3 с-1, то максимально возможная мощность излучения в 1 см3 среды в непрерывном режиме равна:
Р = ћ. (2)
Историческая справка. Утверждения А. Эйнштейна и П. Дирака о вынужденном излучении формировались применительно к оптике, однако развитие К. э. началось в радиофизике. В условиях термодинамич. равновесия высоко расположенные оптич. уровни энергии практически не заселены, т. е. возбуждённых ч-ц в веществе мало. Кроме того, при малых плотностях световой энергии оптич. спонтанные переходы более вероятны, чем вынужденные. Поэтому, именно в оптике отсутствовали источники строго гармонич. колебаний и волн, хотя понятие монохроматичности излучения возникло в оптике. В радиофизике, наоборот, вскоре после появления первых искровых радиопередатчиков развивается техника получения гармонич. колебаний, создаваемых генераторами с колебательными контурами и регулируемой положит. обратной связью. Немонохроматичность излучения обычных источников света и отсутствие в оптике методов и концепций развитых в радиофизике, в частности понятия обратной связи, послужили причиной того, что квант. генераторы (мазеры) появились в радиодиапазоне раньше, чем в оптич. диапазоне.
То обстоятельство, что К. э. родилась в радиодиапазоне, объясняет возникновение термина «квант. радиофизика». Однако термин «К. э.» имеет более общий смысл, охватывая и оптич. диапазон.
В 1-й пол. 20 в. радиофизика и оптика шли разными путями. В оптике развивались квант. представления, в радиофизике — волновые. Общность радиофизики и оптики, обусловленная общей квант. природой эл.-магн. волн. процессов, не проявлялась до тех пор, пока не возникла радиоспектроскопия. Особенность радиоспектроскопич. исследований состояла в использовании источников монохроматич. излучения и в том, что в радиодиапазоне спонтанное излучение гораздо слабее, а возбуждённые уровни заселены за счёт теплового возбуждения уже при комнатных темп-рах (T~300К). Это обстоятельство сказывается на резонансном поглощении радиоволн. Радиоспектроскопич. исследования породили идею о том, что путём создания инверсии населённостей уровней в среде можно добиться усиления радиоволн. Если же к.-л. система усиливает радиоизлучение, то
при соответствующей обратной связи она будет генерировать это излучение. В первом приборе К. э.— молекулярном генераторе, созданном в 1955 одновременно в СССР (Н. Г. Басов, А. М. Прохоров) и в США (Дж. Гордон, X. Цайгер, Ч. Таунс), активной средой являлся пучок молекул аммиака NH3 (см. Молекулярные и атомные пучки). Из пучка молекул выбирались более возбуждённые молекулы и отбрасывались в сторону молекулы, обладавшие меньшей энергией. Отсортированный пучок возбуждённых молекул пропускался через объёмный резонатор, в к-ром возбуждалась генерация. Относит. стабильность частоты колебаний / ~ 10-11 — 10-13.
(О
Квантовые генераторы открыли новые возможности в создании сверхточных часов и точных навигац. систем (см. Квантовые стандарты частоты, Квантовые часы).
Получение инверсии населённостей путём отбора возбуждённых ч-ц не всегда возможно, в частности это невозможно в твёрдых телах. Поэтому уже в 1955 был предложен т. н. метод трёх уровней (Басов, Прохоров).
На ч-цы, имеющие в энергетич. спектре три уровня ξ1 ξ2, ξ3 (рис. 2, а), воздействуют мощным излучением (накачкой), к-рое, поглощаясь, «перекачивает» их с уровня ξ1 на уровень ξ3 до т. н. насыщения, когда их населённости становятся одинаковыми (рис. 2, б). При этом для одной пары уровней ξ1, ξ2 или ξ2, ξ3 будет иметь место инверсия населённостей. Метод трёх уровней был применён (1956, США) для создания квантовых усилителей СВЧ на парамагнитных кристаллах.
Успехи К. э. дали возможность её продвижения в сторону более коротких волн. Существенную трудность представляла разработка резонаторов. Для субмиллиметрового и оптич. излучений резонаторы в виде закрытых полостей изготовить невозможно. В 1958 был предложен первый открытый, резонатор (Прохоров) для субмиллиметрового диапазона. Резонатор представлял собой два параллельных хорошо отражающих металлич. диска, между к-рыми возникает система стоячих волн.
В 1960 был создан первый лазер (Т. Мейман, США). В качестве рабочего вещества в нём использовался
271
монокристалл рубина, а для получения инверсии населённости был применён метод трёх уровней. Отражающими зеркалами резонатора служили хорошо отполированные и посеребрённые торцы кристалла. Источником накачки была лампа-вспышка. Рубиновые лазеры наряду с лазерами на стекле с примесью неодима дают рекордные энергии и мощности (см. Твердотельные лазеры). В 1961 был разработан газовый лазер (А. Джаван, У. Беннетт, Д. Гарриот, США) на смеси неона и гелия. В 1961 предложен (Басов с сотр.), а в 1962 реализован (Р. Хол, а также У. Думке с сотрудниками, США) инжекционный полупроводниковый лазер.
Для получения инверсии населённости в мазерах и лазерах используются разл. физ. механизмы. Но единым и главным для всех методов явл. необходимость преодоления процессов релаксации. Препятствовать процессам восстановления равновесной населённости можно, только затрачивая энергию. При этом в лазерное излучение преобразуется, как правило, малая доля энергии накачки. Однако «проигрыш» в кол-ве энергии излучения компенсируется в К. э. выигрышем в его качестве — монохроматичности и направленности.
Монохроматичность и высокая направленность позволяют сфокусировать всю энергию лазерного излучения в пятно с размерами, близкими к длине волны излучения. В этом случае электрич. поле световой волны достигает значений, близких к внутриатомным полям. При вз-ствии таких полей с веществом возникают совершенно новые явления (см. Лазерное разделение изотопов, Лазерная плазма и др.).
Приборы К. э. революционизировали радиофизику и оптику. Наиболее глубокие преобразования К. э. внесла в оптику. Если в радиофизике К. э. лишь резко улучшила чувствительность усилителей и стабильность частоты генераторов, то в оптике К. э. дала источники света, обладающие совершенно новыми св-вами, позволяющие концентрировать световую энергию в пространстве во времени и в узком спектральном интервале. Это привело к рождению новых областей науки и техники — лазерной химии, нелинейной оптики, голографии, лазерной технологии и др.
Создание и развитие К. э. было отмечено Нобелевской премией по физике в 1964 (Басов, Прохоров, СССР, и Ч. Таунс, США).
• Квантовая электроника, М., 1969 (Маленькая энциклопедия); Прохоров А. М., Квантовая электроника, «УФН», 1965, т. 85, в. 4, с. 599; Басов Н. Г., Полупроводниковые квантовые генераторы, там же, с. 585; Таунс Ч., Получение когерентного излучения с помощью атомов и молекул, пер. с англ., там же, 1966, т. 88, в. 3, с. 461; П а н т е л Р., II у т х о в Г., Основы квантовой
электроники, пер. с англ., М., 1972; Я р и в А., Квантовая электроника, пер. с англ., М., 1980.
Н. В. Карлов.
КВАНТОВЫЕ КРИСТАЛЛЫ, кристаллы, характеризующиеся большой амплитудой нулевых колебаний атомов (колебаний вблизи T=0К), сравнимой с кратчайшим межатомным расстоянием, вследствие чего они обладают необычными физ. св-вами, объяснимыми только в рамках квант. теории. Из известных на Земле в-в только изотопы гелия 3Не и 4Не при давлениях выше 3•104 Па образуют К. к. Квант. эффекты наблюдаются также у кристаллов Ne и в меньшей степени у кристаллов др. инертных газов. В недрах нейтронных звёзд, возможно, существуют К. к., состоящие из нейтронов.
К. к. занимают промежуточное положение между квантовыми жидкостями и обычными кристаллами. Дефекты, в частности вакансии, не локализованы, а в виде своеобразных квазичастиц (вакансионов или дефектонов) распространяются по кристаллу. Это приводит к тому, что коэфф. диффузии и самодиффузии в К. в. не обращаются в 0 при Т=0 К.
При Т < 1 К рост и плавление К. к. могут происходить практически бездиссипативно. Это обеспечивает возможность существования слабо затухающих колебаний поверхности К. к. (кристаллизац. волны).
• Андреев А. Ф., Диффузия в квантовых кристаллах, «УФН», 1976, т. 118, в. 2, с. 252; Андреев А. Ф., Л и ф ш и ц И. М., П и т а е в с к и й Л. П., Новые состояния вещества — квантовые кристаллы и квантовые жидкости, в кн.: Наука и человечество, М., 1979.
С. М. Стишов.
КВАНТОВЫЕ СТАНДАРТЫ ЧАСТОТЫ, устройства для точного измерения частоты колебаний или для генерирования колебаний с весьма стабильной частотой, в к-рых используются квант. переходы (атомов, молекул, ионов) из одного энергетич. состояния в другое.
Рис. 1. Схема атомно-лучевой цезиевой трубки: 1 — источник пучка; 2 и 4 — отклоняющие магниты; 3 — объёмный резонатор; 5 — раскалённая вольфрамовая проволочка (детектор); в — коллектор ионов.
К. с. ч. позволяют измерять частоту колебаний, а следовательно, и их период (время) с наибольшей достижимой в настоящее время точностью (см. ниже). Это привело к их внедрению помимо лабораторной практики в метрологию и службу времени. К. с. ч.— основа нац. эталонов частоты и времени и вторичных эталонов частоты. К. с. ч. характеризуется высокой стабильностью в течение длит. времени. К. с. ч. принято разделять на два класса; активные К. с. ч. (квантовые генераторы) и пассивные К. с. ч., в к-рых измеряемая частота сравнивается с частотой фиксиров. спектр. линии. Сначала были усовершенствованы пассивные К. с. ч.
на пучках атомов Cs. В 1967 междунар. соглашением длительность секунды определена как 9192631770,0 периодов колебаний, соответствующих определённому переходу между уровнями энергии единств. стабильного изотопа цезия 133Cs. В цезиевом стандарте частоты наблюдается контур спектр. линии 133Cs, частота, соответствующая вершине линии, сравнивается с измеряемой частотой с помощью спец. устройств.
Гл. частью цезиевого К. с. ч. явл. т.н. атомнолучевая трубка, в одном конце к-рой расположен источник атомов Cs (полость наполнения жидким Cs, рис. 1), соединённая с остальной трубкой узким каналом (или системой параллельных капилляров). Жидкий Cs поддерживается при темп-ре ок. 100°С, когда давление паров ещё мало, и атомы, вылетая из источника, формируются в слабо расходящийся пучок (см. Молекулярные и атомные пучки). В противоположном конце трубки расположен детектор атомов Cs, состоящий из раскалённой вольфрамовой проволочки 5 и коллектора 6. Как только атом Cs касается проволочки, он отдаёт ей эл-н н в виде иона притягивается к коллектору. В цепи между коллектором и проволочкой возникает электрич. ток, пропорц. интенсивности цезиевого пучка (детектор с поверхностной ионизацией).
По пути от источника к детектору пучок атомов пересекает два постоянных неоднородных магн. поля