От лат cavitas пустота), образование в капельной жидкости полостей, заполненных газом, паром или их смесью (т н. кавитац пузырьков или каверн). Кавитац
Вид материала | Документы |
- Вывихи. Переломы, 241.71kb.
- От лат evaporo испаряю и греч grapho пишу), метод получения изображений объектов, 2696.94kb.
- Реферат от лат rеfеrо "сообщаю", 198.27kb.
- Абсцесс и гангрена легкого определение заболевания острый абсцесс легкого, 403.26kb.
- Перелом подвздошной кости; перелом вертлужной впадины; перелом лобковой кости; открытая, 1124.91kb.
- Вишнев В. Н. Безродная Н. В. Остеохондроз Профилактика и лечение Введение, 623.65kb.
- Реферат от лат. «сообщать», 61.18kb.
- Лекция. Взаимосвязанные рынки, 285.49kb.
- Реферат Реферат, 36.91kb.
- Предыстория или как мне удалось получить музыкальное образование и чем это обернулось, 2157.21kb.
262
Статистич. структуру интерференц. поля впервые наблюдал С. И. Вавилов (1934), им же предложен термин «микроструктура света».
Световое поле — сложный физ. объект, состояние к-рого определяется бесконечным числом параметров. Это относится и к монохроматическому излучению, к-рое при классич. описании характеризуется полностью амплитудой, частотой, фазой и поляризацией. Задача полного определения состояния светового поля не может быть решена из-за непреодолимых технич. трудностей, связанных с бесконечным числом измерений параметров поля. Дополнит. сложности в решение этой задачи вносит существенно квант. хар-р измерений, т. к. они связаны с регистрацией фотонов фотодетекторами.
Успехи лазерной физики и совершенствование техники регистрации слабых световых потоков определили развитие и задачи К. о. Долазерные источники света по своим статистич. св-вам однотипны генераторам шума, имеющего гауссовское распределение. Состояние их полей практически полно определяется формой спектра излучения и его интенсивностью. С появлением квант. генераторов и квант. усилителей К. о. получила в своё распоряжение широкий ассортимент источников с весьма разнообразными, в т. ч. не гауссовскими, статистич. хар-ками.
Простейшая хар-ка поля — его ср. интенсивность. Более полная хар-ка— ф-ция пространственно-временного распределения интенсивности поля, определяемая из экспериментов по регистрации во времени фотонов одним детектором. Ещё более полную информацию о состоянии поля дают исследования квант. флуктуации его разл. величин, к-рые удаётся частично определить из экспериментов по совместной регистрации фотонов поля неск. приёмниками, либо при исследовании многофотонных процессов в в-ве.
Центр. понятиями в К. о., определяющими состояние поля и картину его флуктуации, явл. т. н. корреляционные ф-ции или полевые корреляторы. Они определяются как квантовомеханич. средние от операторов поля (см. Квантовая теория поля). Степень сложности корреляторов определяет ранг, причём, чем он выше, тем более тонкие статистич. св-ва поля им характеризуются. В частности, эти ф-ции определяют картину совместной регистрации фотонов во времени произвольным числом детекторов. Корреляционные ф-ции играют важную роль в нелинейной оптике. Чем выше степень нелинейности оптич. процесса, тем более высокого ранга корреляторы необходимы для его описания. Особое значение в К. о. имеет понятие квантовой когерентности. Различают частичную и полную когерентность поля. Полностью когерентная
волна по своему действию на системы максимально подобна классич. монохроматич. волне. Это означает, что квант. флуктуации поля когерентной волны минимальны. Излучение лазеров с узкой спектральной полосой близко по своим хар-кам к полностью когерентному.
Исследование корреляц. ф-ций высших порядков позволяет изучать физ. процессы в излучающих системах (напр., в лазерах). Методы К. о. дают возможность определять детали межмол. вз-ствнй по изменению статистики фотоотсчётов при рассеянии света в среде.
• Глаубер Р.. Оптическая когерентность и статистика фотонов, в кн.: Квантовая оптика и квантовая радиофизика, М., 1966; Клаудер Д ж., С у д а р ш а н Э., Основы квантовой оптики, пер. с англ., М., 1970; Спектроскопия оптического смещения и корреляции фотонов, под ред. Г. Камминса и Э. Пайка, пер. с англ., М., 1978; Вавилов С. И., Микроструктура света, М., 1950.
С. Г. Пржибельский.
КВАНТОВАЯ РАДИОФИЗИКА, см. Квантовая электроника.
КВАНТОВАЯ СТАТИСТИКА, раздел статистической физики, исследующий системы мн. ч-ц, подчиняющихся законам квант. механики.
КВАНТОВАЯ ТЕОРИЯ МНОГИХ ЧАСТИЦ, раздел квант. теории, посвящённый изучению систем, состоящих из трёх и большего числа ч-ц. В квант. механике система из N ч-ц описывается при помощи волн. ф-ции, зависящей как от координат всех ч-ц, так и от всех др. величин, необходимых для задания состояния каждой ч-цы («внутр. переменных»). Если рассматривается такая система, к-рая явл. частью большой подсистемы, то описание производится с помощью матрицы плотности.
Точное решение задачи мн. тел в квантовой, как и в классической, теории встречает чрезвычайно большие затруднения. Однако можно указать нек-рые общие св-ва симметрии, вытекающие из принципа Паули. Волн. ф-ция для систем, состоящих из нек-рого числа одинаковых (тождественных) ч-ц с полуцелым спином (фермионов), явл. антисимметричной, т. е. её знак изменяется при перестановках переменных (включая внутренние) двух ч-ц. Для систем ч-ц с целым спином — бозонов такая перестановка не меняет знака волн. ф-ции, т. е. волн. ф-ция симметрична. Различие в св-вах симметрии фермионов и бозонов определяет качеств. отличие в поведении систем, состоящих из ч-ц этих двух типов, в частности их распределение по состояниям (уровням энергии), даваемое Бозе — Эйнштейна статистикой (для бозонов) или Ферми — Дирака статистикой (для фермионов). В бозе-системах в данном квант. состоянии может находиться произвольное число ч-ц, и поэтому при абс. темп-ре Т 0 (при отсутствии источников возбуждения) все бозоны будут скапливаться на низшем возможном уровне энергии. В ферми-системах
каждое квант. состояние может занимать лишь одна ч-ца и поэтому они в сходных условиях заполняют все уровни от низшего до нек-рого граничного (уровня Ферми ξF).
Приближённые методы, привлекаемые для решения проблемы мн. тел, приобрели значительно большую эффективность после того, как началось широкое использование представлений квантовой теории поля (КТП). Так, при рассмотрении тв. тела можно принять его состояние при нулевой абс. темп-ре за «вакуумное», поскольку энергия такого состояния минимальна. Возбуждение тв. тела, в частности при его нагревании, можно рассматривать как рождение элем. возбуждений — квантов, каждый из к-рых несёт определённую энергию, импульс и спин. Такие элем. возбуждения наз. квазичастицами (в отличие от «истинных» ч-ц — структурных элементов кристалла, напр. атомов, число к-рых неизменно). Привлечение методов КТП, позволяющих представить эволюцию системы как рождение, вз-ствие и взаимные превращения разл. квазичастиц, оказалось весьма плодотворным для физики тв. тела. Примером может служить создание теории сверхпроводимости.
Несколько иной подход удобно использовать при описании многоэлектронных атомов. Сначала принимается, что эл-ны независимы, т. е. что каждый из них испытывает лишь влияние нек-рого т. н. самосогласованного поля, в к-ром эффективно учитываются как кулоновское поле ядра, так и усреднённое поле вз-ствия между эл-нами. При таком подходе задача о движении каждого из эл-нов (одноэлектронная задача) решается относительно просто. Получаются, как и обычно в квант. механике, наборы возможных состояний с разл. значениями квант. чисел, определяющих энергии, моменты кол-ва движения и др. физ. величины. В соответствии с принципом Паули заполнение эл-нами уровней энергии происходит так, что вначале исчерпываются все возможные наборы квант. чисел в состоянии с наинизшей возможной энергией, затем заполняются более высокие уровни и т. д., пока не будут размещены все эл-ны. При этом в осн. состоянии системы окажутся заполненными все уровни энергии, начиная от наинизшего вплоть до нек-рого предельного значения ξF; такое состояние можно считать «вакуумным». Все более высокие уровни остаются вакантными. Дополнит. влияние неучтённых при этом вз-ствий можно рассматривать квантовополевыми методами. Эти вз-ствия могут приводить к реальному или виртуальному перебросу эл-нов с заполненных уровней на свободные (вакантные), что можно описывать как рождение пары: «над
263
вакуумом» возникает ч-ца, а на освободившемся уровне появляется «дырка», к-рая играет роль античастицы. Рождение таких пар и их аннигиляция могут быть изображены Фейнмана диаграммами. Если вероятность одноврем. образования мн. пар мала, можно упростить задачу, ограничившись учётом рождения и аннигиляции лишь небольшого их числа.
Квантовополевые методы, перенесённые в физику многочастичных систем, оказались здесь даже более эффективными, чем в породившей эти методы физике элем. ч-ц. Более того, КТП получила в новой области такое дальнейшее развитие, к-рое может оказаться полезным и для теории элем. ч-ц. В. И. Григорьев.
КВАНТОВАЯ ТЕОРИЯ ПОЛЯ (КТП), релятивистская квант. теория физ. систем с бесконечным числом степеней свободы. Пример такой системы — эл.-магн. поле, для полного описания к-рого в любой момент времени требуется задание напряжённостей электрич. и магн. полей в каждой точке пр-ва, т. е. задание бесконечного числа величин. В отличие от этого, положение ч-цы в каждый момент времени определяется заданием трёх её координат.
Квантовая механика значительно сблизила эти два объекта — ч-цы и поля. Согласно квант. механике, эл.-магн. излучение порождается и поглощается дискр. порциями — квантами, или фотонами, к-рые, как и ч-цы, имеют определённую энергию ξ =h и импульс р=h/, где и — частота и длина волны излучения. С другой стороны, с каждой ч-цей сопоставляется волновая функция (r, t) и полное описание ч-цы требует задания величины в любой точке пр-ва в каждый момент времени, при этом ч-це приписываются волн. св-ва: частота =ξ/h и дл. волны =p/h, где ξ и р — энергия и импульс ч-цы.
Рождаться и исчезать могут не только фотоны. Одно из самых общих св-в микромира — универсальная взаимная превращаемость ч-ц. Так, фотон может породить пару электрон-позитрон; при столкновении протонов и нейтронов могут рождаться -мезоны; -мезон распадается на мюон и нейтрино и т. д. Для описания такого рода процессов потребовался переход к квантовому волн. полю (r, t), т. е. построение квант. теории систем с бесконечным числом степеней свободы, получившей назв. КТП.
Поясним этот переход с помощью механич. аналогии. Представим, что всё пр-во заполнено связанными между собой осцилляторами. Такая система имеет бесконечно большое число степеней свободы, и её можно рассматривать как поле. Связи между осцилляторами приводят к тому, что в системе могут возникать коллективные колебания, к-рые характеризуются своими собств. частотами, а по системе могут распространяться волны соответствующих колебаний.
При переходе к квантовой механике коллективные колебания квантуются, а возникающие при этом кванты могут рассматриваться как частицы, обладающие, как и волны, энергией и импульсом (следовательно, и нек-рой массой). Очевидно, что эти ч-цы — кванты возбуждения системы нельзя ассоциировать с отд. исходными осцилляторами, находящимися в фиксиров. точках пр-ва. Они представляют собой результат процесса, захватывающего всю систему в целом, и описывают нек-рые возбуждения поля. Т. о., изучение поля можно свести к рассмотрению квантованных волн (или ч-ц) возбуждений, их рождения и поглощения. Строго говоря, свободное квант. поле может быть представлено как подобная бесконечная совокупность осцилляторов, заполняющих не обычное, координатное, а 3-мерное импульсное пр-во. Описанная механич. система, однако, реализуется, напр., в теории кристаллов, где число степеней свободы конечно и можно ограничиться нерелятив. приближением.
КТП с необходимостью должна быть релятивистской теорией. Действительно, теория относительности устанавливает связь между энергией ξ, импульсом р и массой m ч-цы:
Из (1) видно, что мин. энергия (энергия покоя ч-цы), необходимая для образования ч-цы данной массы, равна mc2. Если система состоит из медленно движущихся ч-ц, то их энергия может оказаться недостаточной для образования новых ч-ц ненулевой массы. В такой нерелятив. системе число ч-ц неизменно. Ч-цы же с нулевой массой покоя (фотон, возможно нейтрино) всегда релятивистские, т. е. всегда движутся со скоростью света.
Квантование поля. Метод квантования систем с перем. числом ч-ц (вторичное квантование) был предложен в 1927 англ. физиком П. Дираком и получил дальнейшее развитие в работах В. А. Фока (1932). Осн. его черта — введение операторов, описывающих рождение и уничтожение ч-ц. Поясним их действие на примере одинаковых (тождественных) ч-ц, находящихся в одном и том же состоянии (напр., все фотоны считаются имеющими одинаковые частоту, направление распространения и поляризацию).
В квант. теории состояние системы ч-ц описывается волн. ф-цией или вектором состояния. Введём для описания состояния с N ч-цами вектор состояния N. Квадрат его модуля |N|2, определяющий вероятность данного состояния, равен единице, т. к. N достоверно известно. Введём операторы уничтожения и рождения ч-цы: а- и а+. По определению, а~ переводит состояние с N ч-цами в состояние с N-1 ч-цами:
Аналогично оператор рождения ч-цы а* переводит состояние с N ч-цами в состояние с N+1 ч-цами:
(множители N и (N+1) вводят для выполнения условия нормировки |N|2=1). В частности, при N=0 а+0=1, где 0 — вектор, характеризующий вакуумное состояние, т. е. состояние с нулевым числом ч-ц и мин. энергией. Т. о., одночастичное состояние получается в результате рождения из вакуума одной ч-цы, Поскольку невозможно уничтожить ч-цу в состоянии, в к-ром ч-ц нет, то a-0=0. Это равенство можно считать определением вакуума. Особое значение вакуумного вектора состояния состоит в том, что из него действием оператора а+ можно получить вектор любого состояния:
Порядок действия а- и а+ не безразличен. Так,
т. е. операторы а-, а+ явл. непереставимыми (некоммутирующими). Соотношения типа (6), устанавливающие связь между действием двух операторов, взятых в разл. порядке, наз. коммутационными или перестановочными соотношениями. Если учесть, что ч-цы могут находиться в разл. состояниях, то следует дополнительно указывать, к какому состоянию относятся операторы рождения и уничтожения (т. е. квант. числа состояния — энергию, спин и др.). Для простоты обозначим всю совокупность квант. чисел, определяющих состояние, индексом га; тогда а+т(а-т) обозначает оператор рождения (уничтожения) ч-цы в состоянии с набором квант. чисел n. Числа ч-ц, находящихся в состояниях, соответствующих разл. n, наз. числами заполнения этих состояний, а задание вектора состояния в форме, фиксирующей числа заполнения всех возможных состояний системы,— представлением чисел заполнения.
Если nm, то a-na+m0=0, поскольку невозможно уничтожение ч-ц в таких состояниях, к-рых нет в системе. С учётом этого перестановочные соотношения имеют вид:
264
где nm — символ Кронекера: nm=1 при n=m и nm=0 при nm.
Из а+n и a-n можно построить играющий важную роль оператор числа ч-ц: N(n) = a+na-n [это ясно из приведенного выше равенства a+na-nN=N(n)N]. Через собств. значения N(n) этого оператора выражаются все «кор-1пускулярные» величины, характеризующие систему,—импульс (Р), энергия (В), электрич. заряд (Q) и т. д.:
P=ppN(p), ξ=pξ(p)N(p), Q=peN(p)=eN. Здесь N(р) — число ч-ц системы, имеющих импульс р, ξ(р) — энергия ч-цы с импульсом р, е — заряд ч-цы (одинаковый для всех ч-ц).
Вакуумное состояние. В квант. механике доказывается, что если два к.-л. оператора не коммутируют, то соответствующие им физ. величины не могут одновременно иметь точно определённые значения. Так, не существует состояния эл.-магн. поля, в к-ром были бы одновременно точно определенными напряжённости поля и число фотонов, поскольку относящиеся к этим величинам операторы непереставимы. Поэтому из определения вакуума как состояния с нулевым числом ч-ц вытекает неопределённость напряжённостей поля в вакуумном состоянии, в частности невозможность этих напряжённостей иметь точно нулевые значения. Именно в невозможности одноврем. равенства нулю и числа фотонов, и напряжённостей электрич. и магн. полей лежит физ. причина необходимости рассматривать вакуумное состояние не как простое отсутствие поля, а как одно из возможных состояний поля, обладающее определёнными св-вами, к-рые могут проявляться на опыте (см. Радиационные поправки).
Связь спина со статистикой. Правила перестановок (6) справедливы для ч-ц, имеющих целый спин. Для них N (n) может быть произвольным целым числом, т. е. в одном и том же состоянии n может находиться любое число ч-ц. Такие ч-цы (бозоны) подчиняются Возе — Эйнштейна статистике. Для ч-ц с полуцелым спином (фермионов) знак минус в (6) заменяется на знак плюс:
эти соотношения наз. антикоммутационными. Они связаны с тем, что для фермионов справедлив Паули принцип, согласно к-рому в системе одинаковых ч-ц (напр., эл-нов) в любом состоянии может находиться не более одной ч-цы. Действительно, согласно (8), вектор состояния, содержащий, напр., две ч-цы, при n=m равен самому себе с обратным знаком:
a+na+n0=-a+na+n0, что возможно только для величины, тождественно равной нулю. Такие
ч-цы подчиняются Ферми — Дирака статистике.
Взаимодействие в КТП. До сих пор рассматривались свободные невзаимодействующие ч-цы, число к-рых оставалось неизменным; как нетрудно показать с помощью соотношений (6), оператор числа ч-ц N(n)=a+na-n коммутирует с оператором энергии ξ=ξ(p)N(p), поэтому число ч-ц должно быть постоянным, т. е. процессы появления дополнит. ч-ц, их исчезновение и взаимопревращения отсутствовали. Учёт этих процессов требует включения вз-ствия ч-ц.
В классич. электродинамике вз-ствие между заряж. ч-цами осуществляется через ноле: заряд создаёт поле, к-рое действует на др. заряды. В квант. теории вз-ствие эл.-магн. поля и заряж. ч-цы выглядит как испускание и поглощение ч-цей фотонов, а вз-ствие между заряж. ч-цами явл. результатом их обмена фотонами: каждый из эл-нов испускает фотоны (кванты переносящего вз-ствие эл.-магн. поля), к-рые затем поглощаются др. эл-намн. Подобная картина вз-ствия возникает благодаря особому св-ву электродинамики — т. н. калибровочной симметрии. Аналогичный механизм вз-ствия находит всё большее подтверждение и для др. физ. полей. Однако свободная ч-ца ни испустить, ни поглотить кванта не может. Напр., в системе, где ч-ца покоится, излучение кванта требует затраты энергии и уменьшения массы ч-цы (в силу эквивалентности энергии и массы), что невозможно. Чтобы разрешить этот парадокс, нужно учесть, что рассматриваемые ч-цы— квант. объекты, для к-рых существенно неопределённостей соотношение ξtћ, допускающее изменение энергии ч-цы на величину ξ и, следовательно, излучение или поглощение квантов ноля при условии, что эти кванты существуют в течение промежутка времени tћ/ξ. (На основе подобных рассуждений и факта короткодействия яд. сил япон. физик X. Юкава предсказал существование ч-цы — переносчика яд. вз-ствия с массой прибл. в 200—300 электронных масс, к-рая впоследствии была обнаружена экспериментально и названа -мезоном.)
Теория возмущений. Диаграммы Фейнмана. Виртуальные частицы. Для расчёта процессов в КТП часто используется метод теории возмущений, к-рый заключается в поэтапном учёте всё большего числа актов вз-ствия свободных ч-ц. Каждому этапу учёта вз-ствия можно дать наглядное графич. изображение. Такого рода графики, или диаграммы, были впервые введены амер. физиком Р. Фейнманом и носят его имя.
Введём для изображения каждой свободной ч-цы нек-рую линию, представляющую собой лишь графич. символ распространения ч-цы: фотону — волнистую, эл-ну — сплошную. Иногда на линиях ставят стрелки, условно обозначающие «направление» распространения ч-цы. В первом, втором и т. д. приближениях учитываются однократные, двукратные и т. д. акты вз-ствия между разл. ч-цами (полями). Разная последовательность таких элем. актов соответствует разл.
физ. процессам, а число актов вз-ствия наз. порядком диаграммы. (На всех диаграммах Фейнмана ось времени будет считаться направленной вправо.) На рис. 1 изображена диаграмма 2-го порядка, соответствующая рассеянию фотона на эл-не: в нач. состоянии присутствуют эл-н и фотон, в точке 1 они встречаются и происходит поглощение фотона эл-ном, в точке 2 появляется (испускается эл-ном) новый, конечный фотон.
Это — одна из простейших диаграмм Комптона эффекта. Диаграмма 2-го порядка на рис. 2 отражает процесс обмена фотоном между двумя эл-нами: один эл-н в точке 1 испускает фотон, к-рый затем в точке 2 поглощается вторым эл-ном. Эта диаграмма изображает элем. акт эл.-магн. вз-ствия двух эл-нов. Более сложные диаграммы, соответствующие такому вз-ствию, должны учитывать возможность обмена неск. фотонами, а также испускание и поглощение фотона одним и тем же эл-ном (т. н. радиационные поправки). На рис. 3 изображена диаграмма 3-го порядка, описывающая вз-ствие двух эл-нов с излучением фотона (тормозное излучение).
В приведённых примерах проявляется нек-рое общее св-во диаграмм: все они составляются из простейших
элементов — вершинных частей, или вершин, представляющих собой либо испускание (рис. 4, а) и поглощение (рис. 4, б) фотона эл-ном, либо рождение фотоном электрон-позитронной пары (рис. 5, а) или её аннигиляцию
265
в фотон (рис. 5, б) (античастица изображается такой же линией, что и ч-ца, но направленной «вспять по времени», ибо, согласно теореме СРТ, поглощение ч-цы эквивалентно испусканию античастицы). Каждый из этих
процессов запрещён законами сохранения энергии-импульса. Однако если такая вершина входит составной частью в более сложную диаграмму (как в рассмотренных примерах), то квант. неопределённость снимает этот запрет.
Ч-цы, к-рые рождаются и затем поглощаются на промежуточных этапах процесса, наз. виртуальными, в отличие от реальных ч-ц, существующих достаточно длит. время. На рис. 1 это — виртуальный эл-н, возникающий в точке 7 и исчезающий в точке 2, на рис. 2 — виртуальный фотон и т. д. Т. о., вз-ствие осуществляется путём испускания и поглощения виртуальных ч-ц. Можно несколько условно принять, что ч-ца виртуальна, если квант. неопределённость её энергии ξпорядка ср. значения её энергии. Более распространён др. подход к описанию виртуальных ч-ц, основанных на соотношении (1). Для виртуальных ч-ц это соотношение несправедливо; квадрат их «массы» ξ2/с4-p2/с2 не равен m2, а принимает всевозможные значения, причём разброс последних по отношению к т2 тем больше, чем более «виртуальна» ч-ца. Такой подход позволяет считать, что в каждом элем. процессе вз-ствия сохраняются и энергия, и импульс, квантовые же неопределённости переносятся на массы виртуальных ч-ц.
Диаграммы Фейнмана позволяют при помощи определённых матем. правил находить вероятности соответствующих процессов. Не останавливаясь детально на этих правилах, отметим, что вклад каждой из вершин в амплитуду процесса (квадрат абс. величины к-рой определяет его вероятность, или эфф. сечение) пропорц. константе связи тех ч-ц (или полей), линии к-рых встречаются в вершине. Во всех приведённых диаграммах такой константой явл. электрич. заряд е. Чем больше вершин содержит диаграмма процесса, тем в более высокой степени входит заряд в соответствующее выражение для амплитуды. Так, амплитуда, соответствующая диаграммам на рис. 1 и 2 с двумя вершинами, пропорц. е2, а диаграмма на рис. 3, содержащая три вершины, пропорц. е3. Если диаграммы содержат замкнутые циклы (см. ниже рис. 6, 7, б и 8, б — д), то законы сохранения четырёхмерных импульсов (4-импульсов) р(ξ/с, р), где р2= ξ2/c2-р2, в каждой вершине не позволяют выразить 4-импульсы всех виртуальных ч-ц через 4-импульсы нач. и конечных ч-ц; импульс одной из них оказывается неопределённым, и необходимо производить интегрирование по всем его значениям.
Расходимости. В нек-рых случаях это интегрирование приводит к бесконечно большим выражениям (расходимостям), причина к-рых в том, что в теории используется предположение о точечности свободных ч-ц. На графике вз-ствия двух эл-нов (рис. 2) фотон рождается одним и поглощается другим эл-ном. Однако возможен и процесс, в к-ром виртуальный фотон испускается и поглощается одним и тем же эл-ном (рис. 6).
Т. к. обмен квантами обусловливает вз-ствие, то такой график явл. одной из простейших диаграмм вз-ствия эл-на с самим собой, или с собств. полем. Этот процесс можно также назвать вз-ствием эл-на с фотонным вакуумом, поскольку реальных фотонов здесь нет. Т. о., собств. эл.-магн. поле эл-на создаётся испусканием и поглощением этим же эл-ном виртуальных фотонов. Наличие такого самодействия приводит к увеличению массы эл-на и в классич. электродинамике: поле, порождаемое эл-ном, обладает нек-рой энергией, а следовательно, и массой, и при ускорении эл-на нужно преодолевать также инерцию его эл.-магн. (в простейшем случае — кулоновского) поля. Т. о., и в классич., и в квант. теории поля к «неполевой», или «затравочной», массе m0 ч-цы необходимо добавить «полевую» часть. Вычисление полевой массы, однако, приводит к бесконечной величине (диаграмма рис. 6 расходится).
Поляризация вакуума. Аналогичная трудность встречается и при вычислении заряда эл-на, к-рый обычно определяется через вз-ствие эл-на с внеш.
электростатич. полем. В низшем приближении это вз-ствие описывается диаграммой рис. 7, а (крестиком на диаграмме обозначен источник электростатич. поля). В след. приближении (рис. 7, б) необходимо учесть, что виртуальный фотон может породить из вакуума виртуальную пару электрон-позитрон, к-рая взаимодействует с полем эл-на. Реальный эл-н притягивает виртуальные позитроны и отталкивает виртуальные эл-ны. Это приводит к явлениям, напоминающим поляризацию среды, в к-рую вносится заряж. ч-ца (отсюда назв. явления). Эл-н оказывается окружённым слоем позитронов из виртуальных пар, так что его эфф. заряд изменяется: возникает экранировка заряда, т. е. первоначальный, «затравочный», заряд е0 приобретает отрицат. добавку (эфф. заряд уменьшается). Вычисление же этой добавки (диаграммы рис. 7, б) даёт бесконечную величину.
Перенормировка. Анализ встретившихся трудностей привёл к идее перенормировок. Оказалось, что в квант. электродинамике и нек-рых др. теориях в выражениях для физ. величин бесконечно большие значения всегда появляются лишь в виде добавок к затравочной массе или к затравочному заряду, так что невозможно экспериментально отделить эти части друг от друга (такие теории наз. ренормируемыми или перенормируемыми). Перенормировка заключается в использовании для суммы этих частей эксперим. значений массы и заряда. Это позволяет перестроить разложение (по методу теории возмущений) по е0 разложением по физ. заряду е, уже не содержащему бесконечных величин (подробнее см. Перенормировка). Однако не всегда перенормировка конечного числа величин устраняет расходимости. В нек-рых случаях рассмотрение диаграмм всё более высокого порядка приводит к появлению расходимостей новых типов, тогда говорят, что теория неперенормируема. (Таковы, напр., первые варианты теории слабого вз-ствия.)
Перенормировка заряда и массы даёт возможность выделить конечные наблюдаемые части из бесконечных значений для величин, характеризующих физ. ч-цы. Особое значение это имеет для квант. электродинамики, где каждая вершина соответствующей диаграммы Фейнмана вносит в выражение для амплитуды процесса множитель е (точнее, безразмерную величину e/ћc). Т. к. внутр. линии имеют два конца (соединяют две вершины), добавление каждой внутр. линии изменяет амплитуду прибл. в =е2/ћc1/137 раз. Если записать амплитуду в виде бесконечной суммы членов с возрастающими степенями а, то такому ряду будут соответствовать диаграммы со всё большим числом внутр. линий. Каждый член ряда должен быть примерно на два порядка меньше предыдущего, так что высшие диаграммы должны вносить ничтожно малый вклад и могут быть отброшены. Это позволяет понять, почему именно в квант. электродинамике достигнуто рекордное согласие теории и эксперимента. Напр., вычисления магн. момента эл-на согласуются с его эксперим. значением с точностью до одной миллиардной доли %.
Трудности теории возмущений. Более внимат. рассмотрение показывает,
266
что число высших диаграмм факториально растёт (пропорц. n! = 1•2•3• . . . ... •n, где n — число виртуальных фотонных линий). Для достаточно высокого порядка (т. е. для достаточно большого числа внутр. линий) число диаграмм настолько велико, что перекрывает малый множитель n, и поправка с ростом порядка диаграмм увеличивается, а сумма всего ряда оказывается бесконечной. Такие ряды
(напр., сумма
n!n=+22+63+. . .) наз. асимптотическими. В отличие от конечных (сходящихся) рядов, к-рые позволяют, взяв достаточно большое число членов, проводить вычисления со сколь угодно большой точностью, асимптотич. ряды могут обеспечить лишь нек-рую конечную точность, зависящую от величины а. Для квант. электродинамики этот недостаток теории возмущений не создаёт особых трудностей, поскольку предельная точность вычисления величин, определяемых таким рядом, столь высока (~10-57%), что практически может считаться абсолютной. Иное положение в теории сильного вз-ствия, где эфф. константа связи g, напр. двух нуклонов (т. е. величина, играющая роль заряда в сильном вз-ствии), велика: g2/ћc14 —15. Поэтому те аргументы, к-рые в электродинамике оправдывают отбрасывание высших диаграмм (т. е. использование низших приближений теории возмущений), здесь теряют силу.
Эффективный заряд. Ренормализационная группа. Процедура перенормировки придала квант. электродинамике черты логич. замкнутости. Однако даже в этой теории проблема самосогласованности не может считаться решённой. Одно из усложнений простейших диаграмм Фейнмана (рис. 1,2) состоит в том, что каждая
из входящих в них вершин типа изображённых на рис. 4 и 5 может быть дополнена диаграммами более высоких порядков (рис. 8). В сумме они образуют т. н. вершинную часть (своего рода формфактор эл-на) — нек-рую ф-цию Е(m*) (на рис. 8 изображённую в виде заштрихованного кружка), зависящую от эфф. массы m* (m*2с2=|Q2|, где Q2— квадрат передачи четырёхмерного импульса эл-ном фотону) виртуального фотона и представляющую собой (после проведения перенормировки) ряд по степеням заряда е. Ф-ция Е(m*), т. о., играет роль эффективного заряда, зависящего от расстояния, на к-ром происходит вз-ствие. (Согласно соотношению неопределённостей, большая величина квадрата переданного 4-пмпульса
соответствует малым расстояниям, и наоборот.)
Условие самосогласованности перенормировки приводит к дифф. ур-нию для ф-цин Е (m*):
где (Е) имеет вид ряда по Е, определяемого диаграммами рис. 8. В частности, для диаграммы 8,a =0, а для суммы диаграмм 8, б — д (в пределе m*>>mе, где mе — масса эл-на) (E)=(1/Зћc)Е3. Простой подстановкой можно проверить, что решением ур-ния (9) с таким (Е) будет
Гл. особенность выражения (10) состоит в том, что с ростом m* (с уменьшением расстояния) эфф. заряд растёт. Это и есть рассмотренный выше эффект экранировки заряда вакуумом. При массе m*=mеез/2 знаменатель выражения (10) обращается в нуль, а сам заряд становится бесконечно большим. В результате появляется лишённое физ. смысла ограничение на величину передачи 4-импульса, т. е. квант. электродинамика оказывается несамосогласованной, хотя это проявляется при фантастически высоких энергиях (~10280 эВ!), превосходящих энергию Вселенной. Однако как только заряд становится большим, неправомерно ограничиваться первыми слагаемыми в разложении (Е), а необходимо рассматривать весь ряд. Из-за асимптотич. хар-ра ряда теории возмущений по Е сумма его бесконечно велика при любом значении Е. В математике разработаны методы обращения с подобными рядами и сопоставления с ними конечных величин, но для этого необходимы какие-то дополнит. сведения о св-вах ф-ций (E). Т. о., вопрос самосогласованности квант. электродинамики остаётся открытым.
Из изложенного выше следует, что формальное использование метода возмущений порождает определённые трудности. Даже введение в теорию новой фундам. постоянной (имеющей смысл фундаментальной длины) либо путём «размазывания» вз-ствия по нек-рой области пространства-времени (см. Нелокальная теория поля), либо путём перехода к квантованному пространству-времени (см. Квантование пространства-времени) не устраняет этого дефекта теории возмущений, если продолжать пользоваться её традиц. формой. Хотя все диаграммы становятся конечными, ряд для ф-ции остаётся бесконечным асимптотич.
рядом и по-прежнему неизвестно, как определить его сумму, т. е. выяснить хар-р поведения зфф. заряда на малых расстояниях. Подобная же проблема самосогласованности остаётся и в объединённой теории слабого и эл.-магн. вз-ствий (см. Слабое взаимодействие).
Квантовая хромодинамика (КХД) и асимптотическая свобода. Иная ситуация в квантовой хромодинамике — теории, претендующей на описание
сильного вз-ствия кварков и глюонов. В отличие от квант. электродинамики, здесь вместо одного заряж. лептона (напр., эл-на, мюона) выступают три кварка каждого типа, различающихся квант. числом «цвет». Переносчиками вз-ствия (вместо фотона в квантовой электродинамике) служат восемь «цветных» глюонов — безмассовых частиц со спином 1, источником которых явл. «цветовой заряд» кварков. Поскольку глюоны — «цветные», при их поглощении и испускании кварки меняют свой «цвет». Обладая «цветовым зарядом», глюоны (в отличие от фотонов, не имеющих электрич. заряда) должны испытывать самодействие. Поэтому в КХД в диаграммах Фейнмана появляются вершины типа рис. 9 (пунктирные линии соответствуют глюонам). Это приводит к тому, что в разложении вершинной части по теории возмущений, кроме диаграмм, аналогичных диаграммам рис. 8, а — д квант. электродинамики, появляются диаграммы с самодействием глюонов (рис. 10, е -— з; сплошные линии соответствуют кваркам). Именно эти диаграммы обусловливают тот факт, что первый член разложения по эфф. «цветовому за-
ряду» (т. е. по константе взаимодействия) g оказывается отрицательным:
а вместо (10) получается выражение
где g — величина эфф. заряда при яек-ром фиксированном значения m* = [т.е. g=g(m*=], к-рое с ростом m* (с уменьшением расстояния) стремится к нулю. [Часто (12) записывают в виде g2/ћc=a.s(т*2)= 6/25ln (т*/), где — некий
267
фундам. размерный параметр.│ Т. о., здесь появилась «антиэкранировка заряда»: ч-цы на малых расстояниях становятся как бы свободными точечными объектами. Это явление было названо асимптотической свободой. Оно наблюдается экспериментально в глубоко неупругих процессах. В результате при больших передачах 4-пмпуль-са теория возмущений становится замкнутой: чем больше передача импульса, тем меньше эфф. константа разложения g и тем больше основания для применения теории возмущений по такой константе.
С увеличением расстояния (уменьшением m*) эфф. заряду возрастает и формально при m*==ехр(-6ћc/25g2) становится бесконечно большим: «цветные» кварки и глюоны оказываются как бы заключёнными в «мешке» и не могут вылетать как свободные ч-цы (удержание «цвета»). Однако в этой области уже неправомерно пользоваться ни теорией возмущений для ф-ции (g), на основе к-рой было получено выражение (12), ни приближением одноглюонного обмена (типа рис. 2), описывающим вз-ствие двух кварков. Иных же методов пока нет, хотя поиски их продолжаются. Тем не менее одна из распространённых гипотез состоит в том, что эффект удержания «цвета» должен сохраниться и в точном выражении для ф-ции (g).
Другие подходы. В связи с трудностями теории возмущений в КТП возникли и развиваются подходы, не связанные с разложением по константе вз-ствия. К их числу относятся аксиоматич. подход (см. А ксиоматическая теория поля), для к-рого типичен тщат. анализ положений (аксиом), образующих матем. и физ. фундамент теории, и выделение из их числа наиболее «надёжных». Среди результатов этого подхода — доказательство теоремы СРТ, строгое доказательство связи спина со статистикой, доказательство дисперсионных соотношений для амплитуд разл. процессов, на основе эксперим. проверки которых удалось установить правильность исходных аксиом вплоть до расстояний 5•10-16 см.
Другим направлением выхода за рамки теории возмущений явл. т. н. партонная модель, к-рая возникает как асимптотич. св-во КТП в области больших передач импульса (>>1 ГэВ/с) (см. Партоны). Характерная черта этой модели — установление взаимосвязи между разл. процессами. Напр., знание сечения глубоко неупругого рассеяния эл-на (мюона) на протоне позволяет предсказать поведение сечения рождения пары e+e-(+-) в протон-протонном соударении.
Калибровочные симметрии и единые теории поля. КТП оказалась наиболее адекватным аппаратом для понимания природы вз-ствия ч-ц и объединения всех видов вз-ствий. В физике элем. ч-ц различают сильное, эл.-магн., слабое и гравитац. вз-ствия и соотв. классы ч-ц: адрона (т. е. барионы и мезоны) или образующие их кварки и глюоны, к-рые участвуют во всех видах вз-ствия, лептоны и промежуточные векторные бозоны, не участвующие только в сильном вз-ствии (нейтрино не участвуют также в эл.-магн. вз-ствии), фотон, участвующий только в эл.-магн. и гравитац. вз-ствиях, и гипотетич. гравитон, переносчик гравитац. вз-ствия. Каждая из этих групп ч-ц характеризуется своими специфич. законами сохранения. Так, сохраняется «цветовой» и электрич. заряды. С большой степенью точности сохраняются барионный и лептонный заряды. Кроме того, приближённо сохраняются такие хар-ки сильного вз-ствия, как изотопич. спин, странность, «очарование», и т. д. В КТП каждому из этих законов сохранения соответствует определённая симметрия ур-ний движения относительно преобразований полей. Напр., ур-ния КХД одинаковы для кварков любого «цвета», ур-ния для лептонов (за исключением слагаемого, пропорц. массе) не меняются при замене волн. ф-ции эл-на на волн. ф-цию e или на любую их суперпозицию и т. д. Каждую из этих симметрии по аналогии с квант. электродинамикой можно расширить до локальной калибровочной симметрии, допускающей переход к подобным суперпозициям отдельно в каждой точке пространства-времени. При этом ур-ния движения свободных полей оказываются неинвариантными и необходимо введение компенсирующих (калибровочных) векторных Янга — Миллса полей, обмен квантами к-рых обусловливает вз-ствие между соответствующими ч-цами, подобно тому, как обмен фотонами обусловливает эл.-магн. вз-ствие заряж. ч-ц. Как и для фотона, массы покоя этих квантов для ненарушенной, точной, симметрии должны быть равны нулю. Пример таких квантов — глюоны в КХД.
Для лептонной симметрии, однако, кванты компенсирующих полей — промежуточные векторные бозоны W +, W- и Z° должны быть массивными, т. к. слабое вз-ствие проявляется лишь на очень малых расстояниях (<10-15 см). По этой причине лептонная симметрия должна быть нарушенной. Обычно это т. н. спонтанное нарушение симметрии, при к-ром нарушается симметрия не ур-ний ноля, а их решений, описывающих физ. состояния ч-ц. Как и в случае точной симметрии, теория оказывается ренормируемой, т. е. позволяет вычислять радиац. поправки к вероятностям физ. процессов.
Универсальный способ введения всех вз-ствий, основанный на калибровочной симметрии, даёт возможность
их объединения. При этом различие в величинах вз-ствия обусловливается разными массами ч-ц — переносчиков вз-ствия. Так, в 60-х гг. была создана единая теория слабых и эл.-магн. вз-ствий (см. Слабое взаимодействие). Характерная особенность этой схемы — предсказание существования W+, W-, Z° с массами (в энергетич. ед.) ок. 80—90 ГэВ и т. н. скалярных ч-ц Хиггса (массы к-рых не предсказываются теорией). Идёт интенсивная работа по включению в эту теорию и сильного вз-ствия путём «великого объединения» (Grand Unification) «цветовой» и лептонной симметрии. Одним из предсказаний такой теории явл. несохранение барионного заряда и, как следствие, нестабильность протона (его время жизни оценивается в 1030 —1032 лет). Расширение принципа калибровочной симметрии до суперсимметрии, объединяющей в одном семействе ч-цы с разными спинами и статистиками, даёт надежду на включение в объединённую схему и гравитац. вз-ствия (т. н. теория супергравитации).
• Ф е й н м а н Р. Ф., Теория фундаментальных процессов, пер. с англ., М., 1978; его же, Квантовая электродинамика, пер. с англ., М., 1964; Вайнберг С., Единые теории взаимодействия элементарных частиц, «УФН», 1976, т. 118, в. 3, с. 505.
А. В. Ефремов.
КВАНТОВАЯ ХИМИЯ, область теор. химии, в к-рой идеи и методы квант. механики применяются к исследованию атомов, молекул и др. хим. объектов и процессов. Квантовомеханич. подход в химии чаще всего основывается на Шредингера уравнении для атома, молекулы или совокупности атомов и молекул: H=E. Оператор Н (гамильтониан) учитывает как кинетич. энергию составляющих систему ч-ц (ат. ядер и эл-нов), так и энергию их вз-ствия друг с другом и с внеш. полями. Решение ур-ння даёт значение полной энергии системы Е и её состояния — волновые ф-ции , к-рые зависят от пространств. и спиновых координат всех ч-ц и с помощью к-рых можно в принципе рассчитать св-ва системы. Однако точные решения найдены лишь для атома водорода (см. Квантовая механика), поэтому для решения конкретных задач К. х. разработан ряд приближённых методов.
Электронное строение молекул — гл. предмет К. х. Согласно адиабатич. приближению, движение эл-нов в ат. системах рассматривается при фиксиров. положениях ядер и описывается электронной волн. ф-цией, зависящей от координат эл-нов и ядер. Из неполных сведений о виде этой ф-ции можно вывести качеств. интерпретацию физ. св-в молекул и их спектров, а более точные вычисления позволяют получить количеств. результаты.
Основы квант. теории многоэлектронных систем были заложены в работе нем. физика В. Гейзенберга, по-
268
священной атому гелия (1926), и работах нем. физиков В. Гейтлера (Хайтлер) и Ф. Лондона о молекуле водорода (1927). Они показали, что существование, устойчивость и св-ва этих систем невозможно объяснить в рамках классич. представлений. В последующих исследованиях были развиты методы определения электронных волн. ф-ций для более сложных ат. систем. Наиболее важный из них — метод мол. орбиталей (МО) — рассматривает движение валентных эл-нов молекулы в ноле всех остальных эл-нов и ядер атомов, входящих в молекулу. Волн. ф-ции при таком одноэлектронном приближении находят при решении ур-ния Шрёдингера вариац. методом, обычно по схеме самосогласованного поля.. Метод МО представляет собой упрощённый вариант более общего метода вз-ствия конфигураций, к-рый в принципе позволяет рассчитывать достаточно точные волновые ф-ции молекул.
Нахождение и использование даже простейших волновых ф-ций сопряжено с весьма трудоёмкими вычислениями.
В ранних квантовохим. исследованиях применялись почти исключительно приближённые полуэмпирич. методы. В сочетании с возмущений теорией они развивались как искусство делать качеств. предсказания практически без вычислений, основываясь на интуиции и аналогиях. Так были установлены принципы теории межатомных взаимодействий и межмолекулярных взаимодействий, разработаны основы мол. спектроскопии, создана качеств. теория строения и реакц. способности нек-рых типов органич. молекул.
Развитие вычислительной техники в 60-х гг. 20 в. изменило стиль и направление квантовохим. исследований. Стали быстро развиваться неэмпирич. методы расчёта молекул и количеств. варианты полуэмпирич. методов. Расчёт на ЭВМ электронного строения молекул ср. размеров (20—30 эл-нов) производится уже с точностью, во мн. случаях достаточной для предсказания геом. строения, физ. св-в и спектров таких молекул. Особенно важны квантовохим. методы расчёта при изучении не поддающихся эксперим. регистрации короткоживущих активных ч-ц и активированных комплексов.
На совр. этапе в К. х. наряду с традиц. расчётами электронных волн. ф-ций разрабатываются новые проблемы и методы. Развивается квант. теория движения ядер в хим. системах, рассматриваются системы, меняющиеся во времени — в условиях хим. реакций, фотовозбуждения и распада и т. д. Успешное решение задач К. х. во многом зависит от развития методов квант. механики и статистич. физики так, что К. х. можно с основанием рассматривать как ветвь теор. физики.
КВАНТОВАЯ ХРОМОДИНАМИКА (КХД), квантовополевая теория сильного вз-ствия кварков и глюонов, построенная по образу квант. электродинамики (КЭД) на основе «цветовой» калибровочной симметрии. В отличие от КЭД, фермионы в КХД имеют дополнит. степень свободы — квант. число, принимающее три значения и наз. «цветом». Такими фермионами явл. кварки. Кварк каждого типа («аромата» — u, d, s, с, b) может находиться в трёх «цветовых» состояниях, связанных друг с другом калибровочными преобразованиями. Аналогом электрич. заряда (источника эл.-магн. поля) в КХД явл. «цветовой заряд», к-рый порождает глюонное поле. Вз-ствие кварков осуществляется посредством обмена глюонными полями восьми «цветовых» разновидностей, играющими роль компенсирующих (калибровочных) Янга — Миллса полей. В отличие от эл.-магн. поля, эти поля, являясь «цветными», обладают «цветовым зарядом» и поэтому сами порождают глюонные поля и взаимодействуют друг с другом. Вследствие этого ур-ния для глюонного поля (в отличие от Максвелла уравнений в вакууме) нелинейны. Квантами глюонных полей явл. глюоны — ч-цы со спином 1 и нулевой массой покоя. В кач-ве константы вз-ствия (константы связи) выступает «цветовой заряд» кварков и глюонов.
В методе теории возмущений вз-ствие глюонов приводит к тому, что в Фейнмана диаграммах наряду с вершинами
типа, изображённого на рис. 1, а, где кварк q (сплошная линия), испуская (или поглощая) глюон g (пунктирные линии), может изменить свой «цвет» (не меняя «аромата»), появляются вершины типа рис. 1, б, в, представляющие собой самодействие глюонов. Благодаря самодействию глюонов поляризация вакуума приводит к антиэкранировке «цветового» эффективного заряда g, т. е. к его убыванию с ростом квадрата переданного четырёхмерного импульса (4-импульса) Q2 (см. Квантовая теория поля):
где — некий фундам. размерный параметр теории. Сравнение с данными эксперимента показывает, что величина лежит в интервале 100— 300 МэВ/с. Это св-во т. н. асимптотической свободы позволяет доказать в КХД справедливость партонной картины процессов с большой передачей 4-импульса (см. Партоны).
Однако благодаря вз-ствию между кварками и глюонами КХД вносит в эту картину ряд характерных элементов. К ним, например, относятся: а) определённый закон нарушения масштабной инвариантности в глубоко неупругих процессах; б) определённое угл. распределение адронных струй, образующихся в процессе аннигиляции электрон-позитронной пары в адроны (рис. 3), и, в частности, появление при высокой энергии трёхструйных процессов, связанных с испусканием жёсткого глюона кварком или антикварком, возникших при аннигиляции е+е-; в) трёхструйный хар-р распада ипсилон-частицы (=bb~) через трёхглюонную аннигиляцию bb~; г) гораздо меньшая ширина распада векторных мезонов (напр., J/), чем псевдоскалярных или скалярных (напр., с), поскольку первые распадаются с испусканием трёх глюонов (вероятность ~3s), а вторые— двух (вероятность ~2s), и ряд др. эффектов, получивших не только качественное, но и количеств. подтверждение в эксперименте. Всё это даёт
основание рассматривать КХД как динамику «цветных» кварков, связывающую их в «бесцветные» адроны, т. е. как динамику сильного вз-ствия. Наиб. острая проблема КХД — причина отсутствия свободных кварков и глюонов. Она тесно связана с вопросом о том, как дальнодействующие силы между кварками (из-за обмена безмассовыми глюонами) превращаются в короткодействующие яд. силы между адронами. Обычно считается, что по мере удаления «цветного» кварка, напр. в протоне (состоящем из трёх кварков), эфф. вз-ствие его возрастает настолько, что из вакуума рождается пара кварк-антикварк, «обесцвечивающая» как вылетающий кварк, так и остаток протона: кварк превращается в виртуальный мезон (qq~), ответственный за яд. силы (рис. 2). Аналогично объясняется и рождение адронных струй. Напр., в процессе аннигиляции пары е+е- в адроны рождается пара «цветных» qq~, к-рая по мере разлёта рождает
269