Теория машин и механизмов

Методическое пособие - Разное

Другие методички по предмету Разное

 ????????????????????????????????1,рад

Диаграмма первой передаточной функции

???????????q2, рад/с

 

 

 

0 ??????????????????????????????????????????????

???????????????????????????????????????????????????????????????????????????????????????????????????????????1,рад

Диаграмма второй передаточной функции

?q2, с-2

 

 

 

0 ??????????????????????????????????????????????

???????????????????????????????????????????????????????????????????????????????????????????????????????????1,рад

Рис. 3.8

Механизм зубчатой передачи не является цикловым механизмом, так как угловое перемещение выходного звена увеличивается при увеличении углового перемещения входного. Поэтому кинематические диаграммы принято строить для одного оборота входного звена (рис 3.8).?

 

Диаграммы функции положения и передаточных функций для зубчатой передачи.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Графические методы кинематического анализа

 

Метод планов (рассмотрим на примере кривошипно-ползунного механизма):

Построение кинематических схем (планов положений): Основная задача построения кинематических схем, заключается в том, чтобы изобразить на бумаге схему, дающую представление о кинематических и геометрических зависимостях отдельных звеньев механизма. Для этого нет необходимости изображать механизм отображая сложные конструктивные формы, достаточно изображение механизма в виде простейших линий, учитывая, что он составлен из жестких неизменяемых звеньев.

Кинематические схемы выполняются в масштабе (масштабном коэффициенте):

Построенный ряд последовательных планов положений механизма позволяет получить траектории движения точек звеньев механизма, а также их перемещения, рассмотрим последовательность построений для кривошипно-ползунного механизма (рис. 3.9, а).

Разметка траекторий движения всех звеньев механизма осуществляется методом засечек. С этой целью угол поворота кривошипа разбивается 12 равных частей, и строятся текущие положения кривошипа О1Аi (за начало отсчета удобней принять внешнее предельное положение кривошипа и шатуна соответствующее нижней мертвой точке ползуна). Из полученных точек Аi циркулем, расстояние, между ножками которого равно длине шатуна АВ в масштабе построения, делаются засечки на траектории движения ползуна (прямая ХХ), т.е. получаем текущие положения ползуна (точка Вi), соединив которые с соответствующими точками Аi, получают промежуточные положения шатуна. На плане положений механизма определяем текущие положения центров тяжести кривошипа и шатуна (точки S1 и S2).

Текущие значения перемещений ползуна можно определить из плана положений механизма, как расстояние от крайнего нижнего положения ползуна (точка В0) до текущего положения (точки Вi) умноженное на масштаб построений.

Построение плана скоростей:

Построение планов скоростей и ускорений ведется в порядке присоединения групп Ассура к начальному механизму. Поскольку кривошипно-ползунный механизм имеет одну степень подвижности, то заданное движение входного звена (в данном случае кривошипа О1А) определяет движение всех остальных звеньев. Т.к. звено О1А совершает вращательное движение, то траекторией точки А является окружность с центром в точке О1. Вектор скорости точки А направлен по касательной к траектории движения, т.е. перпендикулярно радиусу О1А, в сторону вращения кривошипа. Величина скорости определяется из выражения:

,

где кр .- угловая скорость кривошипа, рад/с; r радиус кривошипа, м.

Известный по величине и направлению вектор скорости А строят в виде отрезка произвольной длины ра, из выбранного полюса р - плана скоростей (рис. 3.9, б). В этом случае масштаб плана скоростей:

, .

При определении скорости точки В следует отметить, что ползун совершает возвратно-поступательное движение, т.е. траекторией его движения является прямая линия, а вектор её скорости направлен параллельно линии перемещения. Т.к. точка В одновременно принадлежит и ползуну, и шатуну, то для дальнейшего построения плана скоростей следует воспользоваться векторным уравнением, выражающим связь между скоростями точек А и В шатуна:

,

где вектор абсолютной скорости точки В; вектор скорости переносного движения, скорости полюса в качестве которого принята точка А; вектор относительной скорости точки В по отношению к точке А (вектор вращательной скорости точки В вокруг полюса точки А).

Внимание: чтобы отложить любой вектор нужно знать его величину и направление, поэтому, здесь, и далее вектор, известный по величине и направлению, подчеркнут двумя линиями, а вектор известный только по направлению, подчеркнут одной линией.

Рис. 3.9

 

В векторном равенстве две неизвестные величины: скорость В и относительная (вращательная) скорость ВА. Вектор абсолютной скорости направлен параллельно линии перемещения ползуна ХХ, а вектор относительной скорости перпендик