Разработка факультативного курса "Алгебраические числа" для учащихся общеобразовательной школы
Дипломная работа - Педагогика
Другие дипломы по предмету Педагогика
?отребляться иррациональные числа. Б.Паскаль (1623-1662) и И. Барроу (1630-1677), учитель Ньютона в Кембриджском университете, утверждали, что такое число, как , можно трактовать лишь как геометрическую величину. Однако в те же годы Р. Декарт (1596-1650) и Дж.Валлис (1616-1703) считали, что иррациональные числа допустимы и сами по себе, без ссылок на геометрию. В это время продолжались споры по поводу законности введения отрицательных чисел. Еще менее приемлемыми считались возникавшие при решении квадратных уравнений комплексные числа, такие как , названные Декартом мнимыми. Эти числа были под подозрением даже в 18 в., хотя великий российский математик (швейцарец по происхождению) Л.Эйлер (1707-1783) с успехом пользовался ими.
Достижения в алгебре.
Решение задач, сводящихся к частным видам уравнений 2-ой и 3-ей степени, можно найти еще в древнем Вавилоне (2000 лет до н.э.). Первое изложение теории решения квадратных уравнений дано в книге Диофанта Арифметика (3 в. н.э.). В 16 в. итальянские математики Н. Тарталья (1499-1577), С. Дель Ферро (1465-1526), Л. Феррари (1522-1565) и Дж. Кардано (1501-1576) нашли общие решения уравнений третьей и четвертой степеней. Чтобы сделать алгебраические рассуждения и их запись более точными, были введены символы: +, -, , , , =, < и другие. Самым существенным новшеством стало систематическое использование французским математиком Ф. Виетом (1540-1603) букв для обозначения неизвестных и постоянных величин. Это нововведение позволило ему найти единый метод решения уравнений второй, третьей и четвертой степеней.
Великий английский физик и математик И.Ньютон (1643-1727) открыл соотношение между корнями и дискриминантом [b2 - 4ac] квадратного уравнения, а именно, что уравнение ax2 + bx + c = 0 имеет равные действительные, разные действительные или комплексно сопряженные корни в зависимости оттого, будет ли дискриминант b2 - 4ac равен нулю, больше или меньше нуля. В 1799 великий немецкий математик К.Гаусс (1777-1855) доказал так называемую основную теорему алгебры: каждый многочлен n-й степени с комплексными коэффициентами имеет ровно n комплексных корней.
В течение почти 300 лет после открытия способов решения уравнений степени 3 и 4 делались безуспешные попытки решить в радикалах уравнения степени 5 и выше с буквенными коэффициентами. Такие попытки предпринимал великий немецкий математик Г. Лейбниц, но бог распорядился иначе. Только в 1826 г. норвежский математик Н. Абель (1802-1829) доказал, что невозможно получить общее решение уравнения степени выше 4 с помощью конечного числа указанных операций. Это, правда, не исключало, что корни каждого конкретного уравнения с числовыми (а не буквенными) коэффициентами могут быть выражены в радикалах. Тем более, что существует много уравнений специального вида степени выше 4, допускающих такое решение.
Накануне своей гибели на дуэли французский математик Э. Галуа (1811-1832) дал решающий ответ на вопрос о том, какие уравнения разрешимы в радикалах. В теории Галуа использовались перестановки корней и было введено понятие группы, которое нашло широкое применение во многих областях математики. Примером уравнения неразрешимого в радикалах является уравнение x5 - 25x - 5 = 0. Нельзя не отметить теоретико-групповые и теоретико-полевые идеи и результаты великого французского математика Ж. Лагранжа (1736-1813), приблизившие решение проблемы разрешимости уравнений в радикалах. Кстати, весьма близок к решению проблемы был и Абель, которого сразила смерть в 1829 году, когда он интенсивно занимался этой проблемой и сообщил Лежандру свои результаты, уж очень близкие к результатам Галуа. Дальнейшее развитие возникших идей привело к созданию теорий групп, колец и полей - важнейших направлений современной алгебры.
Заметим, что разрешимость уравнений в радикалах тесно связана с вопросом о геометрических построениях с помощью циркуля и линейки, в частности, задача о построении правильного n-угольника. Эта задача в полном объеме была решена Гауссом, при этом потребовалось изучить корни n-ой степени из единицы в поле комплексных чисел.
Аналитическая геометрия.
Аналитическая или координатная геометрия была создана независимо видными французкими математиками П. Ферма (1601-1665) и Р. Декартом для того, чтобы расширить возможности евклидовой геометрии в задачах на построение. Однако Ферма рассматривал свои работы лишь как переформулировку сочинения Аполлония. Подлинное открытие - осознание всей мощи алгебраических методов - принадлежит Декарту. Декарт решил эту проблему: он формулировал геометрические задачи алгебраически, решал алгебраическое уравнение и лишь затем строил искомое решение - отрезок, имевший соответствующую длину. Собственно аналитическая геометрия возникла, когда Декарт начал рассматривать неопределенные задачи на построение, решениями которых является не одна, а множество возможных длин.
Аналитическая геометрия использует алгебраические уравнения для представления и исследования кривых и поверхностей. Декарт считал приемлемой кривую, которую можно записать с помощью единственного алгебраического уравнения относительно х и у.
Аналитическая геометрия полностью поменяла ролями геометрию и алгебру. Как заметил Лагранж, пока алгебра и геометрия двигались каждая своим путем, их прогресс был медленным, а приложения ограниченными. Но когда эти науки объединили свои усилия, они позаимствовали друг у друга новые жизненные силы и с тех пор быстрыми шагами направились к совершенству. Следует отметить, что идея введения координат и проблемы,