Курсовой проект по предмету Математика и статистика

  • 281. Теория вероятностей. От Паскаля до Колмогорова
    Курсовые работы Математика и статистика

    Уже в первой половине 18 века выяснилось, что классическое понятие вероятности имеет ограниченную область применений и возникают ситуации, когда оно не действует, а потому необходимо какое-то естественное его расширение. Обычно считают, что таким толчком послужили работы французского естествоиспытателя Ж.Бюффона (17071788), в которых он сформулировал знаменитую задачу о бросании иглы на разграфленную плоскость и предложил ее решение. Однако, задолго до рождения Бюффона появилась работа, в которой фактически уже был поставлен вопрос о нахождении геометрической вероятности. В 1692г. в Лондоне был опубликован английский перевод книги Х.Гюйгенса «О расчетах в азартных играх», выполненный Д.Арбутнотом (16671735). В конце первой части переводчик добавил несколько задач, среди которых была сформулирована задача совсем иной природы, по сравнению с теми, которые были рассмотрены великим автором. Он назвал эту задачу трудной и поместил ее в дополнении «для того, чтобы она была решена теми, кто считает такого рода проблемы достойными внимания». Задача, предложенная Арбутнотом состоит в следующем: на плоскость наудачу бросается прямоугольный параллелепипед, с ребрами, равными ,,. Спрашивается, как часто параллелепипед будет выпадать гранью ? Сам Арбутнот не сделал даже попытки решить придуманную им задачу. Это было осуществлено значительно позднее Т.Симпсоном (17101761) в книге «Природа и законы случая». Идея решения состоит в следующем: опишем около параллелепипеда сферу и спроектируем из центра на поверхность ее все ребра, боковые грани и основания. В результате поверхность сферы разобьется на шесть непересекающихся областей, соответствующих граням параллелепипеда. «Нетрудно заметить, что определенная часть сферической поверхности, ограниченная траекторией, описанной таким образом радиусом, будет находиться в таком же отношении к общей площади поверхности, как вероятность появления некоторой грани к единице». Здесь заключены принципы разыскания геометрических вероятностей: вводится мера множества благоприятствующих событию случаев и берется ее отношение к мере множества всех возможных случаев. В нашем случае полная мера сводится к площади поверхности шара.

  • 282. Теория графов
    Курсовые работы Математика и статистика

     

    • Граф - пара множеств V и X - G = (V, X). V - множество вершин, X - множество ребер.
    • Петля - ребро вида (v, v).
    • Кратные рёбра - одинаковые пары в X.
    • Ориентированный граф (орграф D) - граф, для которого пары в Х упорядочены. Ребра в орграфе называются дугами и обозначаются <u, v>.
    • Степенью вершины V графа G называется число d(v) рёбер графа, инцидентных вершине v. Если d(v) = 1, тогда v - висячая вершина, если d(v) = 0, тогда v - изолированная вершина.
    • Полустепенью исхода (захода) вершины v орграфа D называется d+(v) - число дуг, исходящих из v (? - (v) - число дуг, заходящих в v).
    • Маршрутом для графа G (путём для орграфа D) называется последовательность v1x1v2x2v3…xkvk+1.
    • Цепь - незамкнутый маршрут (путь), в котором все рёбра (дуги) попарно различны.
    • Простая цепь - цепь, в которой все вершины попарно различны.
    • Цикл (контур) - замкнутый маршрут (путь), в котором все рёбра (дуги) попарно различны.
    • Простой цикл (контур) - цикл (контур), в котором все вершины попарно различны.
    • Длина пути - число рёбер (дуг) в маршруте (пути).
    • Путь в графе называется минимальным, если он состоит из минимального количества рёбер.
  • 283. Теория случайных функций
    Курсовые работы Математика и статистика

    Система отказывает либо если переходит в состояние 2 процесса x(t) (т.е. отказ какого-либо элемента при количестве резервных элементов, равным нулю), либо если находится в состоянии 0 процесса d(t) (т.е. отказ какого-либо элемента и отказ КПУ).

  • 284. Теория статистических методов
    Курсовые работы Математика и статистика

    Обследуемые единицы отбираются так, чтобы, опираясь на полученные по этим единицам данные, составить правильное представление о явлении в целом. Поэтому одной из существенных особенностей несплошного наблюдения является организация отбора единиц обследуемой совокупности способами: основного массива, монографическим, анкетным и выборочным наблюдением. Способ основного массива предусматривает отбор единиц совокупности, преобладающих по изучаемому признаку. Данный способ не обеспечивает отбора единиц, которые представляли бы все части совокупности. Монографическое наблюдение - детальное описание небольшого числа единиц совокупности. Типическая монография, как один из способов изучения особенностей единиц совокупности, предусматривает отбор из состава всей совокупности качественно однородных единиц одного типа. Собираются сведения по 1-3 единицам с индивидуальными значениями признака, близкими к типичным значениям признака в группе. К числу недостатков типической монографии относится субъективный выбор единиц наблюдения, когда руководствуются только общим представлением об их характерных особенностях. Кроме того, число отобранных единиц невелико, не соответствуют численности самой группы, и полученные данные не позволяют изучить распределение единиц (состав, долю) в пределах отдельной группы. Большая уверенность в репрезентативности данных, полученных типической монографией, достигается, если выбор единиц основан на данных ранее выполненных сплошных наблюдений. Анкетный способ предусматривает раздачу анкет (иногда анкеты публикуют) всем единицам совокупности для специальных обследований, например с целью изучения регулярности доставки почтовой корреспонденции, мнений по отдельным вопросам. Анкеты заполняются добровольно и поэтому не всегда обеспечивается репрезентативность выборки. Программа анкетного обследования содержит узкий круг вопросов, ответы на которые часто дают только заинтересованные лица. Большое распространение получает метод интервью, когда опрос ведется путем личного общения по специально разработанной программе. Такой метод широко применяется в социологических исследованиях. Наиболее совершенным с научной точки зрения видом несплошного наблюдения является выборочное наблюдение. Выборочное наблюдение представляет собой такой вид статистического наблюдения, при котором обследованию подвергается некоторая часть единиц изучаемой совокупности, отобранная в определенном строго научном порядке, с целью последущей характеристики всей совокупности. Сплошное и несплошное статистическое наблюдение осуществляется различными способами: непосредственным наблюдением, опросом и документированной записью. Источником сведений служит опрос. По способу регистрации фактов опрос имеет разновидности: экспедиционный способ, саморегистрация, корреспондентский способ и документированная запись. Экспедиционный способ предусматривает сбор сведений на месте возникновения факта. Специальный регистратор производит опрос и сам записывает ответ. Этот способ обеспечивает точную информацию, но требует значительных затрат времени, труда и средств. Саморегистрация осуществляется с участием специального регистратора на месте сбора сведений. Регистратор только разъясняет порядок ответов на поставленные вопросы в бланке, а ответы даются обычно представителями организаций и предприятий. Этот способ требует значительных затрат времени и средств, а также привлечения высококлалифицированных статистических работников. Корреспондентский способ предполагает рассылку статистическими и другими органами управления специально разработанных бланков и инструкций по их заполнению хозяйствующим субъектам или специально выделенным лицам корреспондентам для изучения определенного вопроса. Сведения поступают в установленные сроки по почте, телеграфом или доставляются нарочным. Способ не требует особых затрат, но качество информации зависит от уровня знаний и степени подготовки корреспондентов. Документированная запись - основная форма статистического наблюдения является основным источником расчета статистических показателей.

  • 285. Транспортная задача линейного программирования
    Курсовые работы Математика и статистика

    Алгоритм и методы решения транспортной задачи могут быть использованы при решении некоторых экономических задач, не имеющих ничего общего с транспортировкой груза. В этом случае величины тарифов cij имеют различный смысл в зависимости от конкретной экономической задачи. К таким задачам относятся следующие:

    1. оптимальное закрепление за станками операций по обработке деталей. В них cij является таким экономическим показателем, как производительность. Задача позволяет определить, сколько времени и на какой операции нужно использовать каждый из станков, чтобы обработать максимальное количество деталей. Так как транспортная задача требует нахождения минимума, то значения cij берутся с отрицательным знаком;
    2. оптимальные назначения, или проблема выбора. Имеется m механизмов, которые могут выполнять m различных работ с производительностью cij. Задача позволяет определить, какой механизм и на какую работу надо назначить, чтобы добиться максимальной производительности;
    3. задача о сокращении производства с учетом суммарных расходов на изготовление и транспортировку продукции;
    4. увеличение производительности автомобильного транспорта за счет минимизации порожнего пробега. Уменьшение порожнего пробега сократит количество автомобилей для перевозок, увеличив их производительность;
    5. решение задач с помощью метода запрещения перевозок. Используется в том случае, если груз от некоторого поставщика по каким-то причинам не может быть отправлен одному из потребителей. Данное ограничение можно учесть, присвоив соответствующей клетке достаточно большое значение стоимости, тем самым в эту клетку не будут производиться перевозки.
  • 286. Тригонометрические уравнения и неравенства
    Курсовые работы Математика и статистика

    В дипломной работе приведены основные теоретические сведения: определение и свойства тригонометрических и обратных тригонометрических функций; выражение тригонометрических функций через другие тригонометрических функции, что очень важно для преобразования тригонометрических выражений, в особенности содержащих обратные тригонометрические функции; кроме основных тригонометрических формул, хорошо известных из школьного курса, приведены формулы упрощающие выражения, содержащие обратные тригонометрические функции. Рассмотрены решение элементарных тригонометрических уравнений, метод разложения на множители, методы сведения тригонометрических уравнений к алгебраическим. Ввиду того, что решения тригонометрических уравнений можно записать несколькими способами, и вид этих решений не позволяет сразу установить, являются ли эти решения одинаковыми или различными, рассмотрена общая схема решения тригонометрических уравнений и подробно рассмотрено преобразование групп общих решений тригонометрических уравнений. Подробно рассмотрены методы решения элементарных тригонометрических неравенств, как на единичной окружности, так и графическим методом. Описан процесс решения неэлементарных тригонометрических неравенств через элементарные неравенства и уже хорошо известный школьникам метод интервалов. Приведены решения типичных заданий на отбор корней. Приведены необходимые теоретических сведения для отбора корней: разбиение множества целых чисел на непересекающиеся подмножества, решение уравнений в целых числах (диафантовых).

  • 287. Уравнения и неравенства с модулем на централизованном тестировании
    Курсовые работы Математика и статистика

    Решение. Первое уравнение есть уравнение окружности, второму удовлетворяют точки квадрата с центром в начале координат и с диагоналями, принадлежащими осям координат. Система из двух первых уравнений в зависимости от и либо не имеет решений, либо имеет четыре решения, либо восемь. Итак, может равняться либо 0, либо 4, либо 8. Первое уравнение второй системы есть уравнение сферы. Второму удовлетворяют точки октаэдра с центром в начале координат и с вершинами, лежащими на осях координат на равных расстояниях от центра. Эта система в зависимости от и либо не имеет решений, либо имеет 6 решений (вершины октаэдра лежат на сфере), либо имеет 8 решений (сфера касается граней октаэдра), либо имеет бесконечное число решений (сфера пересекает грани октаэдра по окружностям или нескольким дугам окружностей). Итак, может равняться либо 0, либо 6, либо 8, либо . Условию удовлетворяет только вариант , .

  • 288. Фактор-группы. Cмежные классы
    Курсовые работы Математика и статистика

    Среди подгрупп группы S со своими сопряженными совпадают следующие подгруппы: E, S, H= (см. пример выше). По теореме 4.1. эти три подгруппы нормальны в S. Ясно, что S/ S единичная группа, а S/ E изоморфна S.Порядок подгруппы H= равен 3, а порядок S/ H равен 2. Поэтому S/ H циклическая группа порядка 2.Смежные классы S по H исчерпываются классами H и (12)H. Таким образом, группа S имеет три фактор-группы: S/ H S, S/ SE, S/ H={H,(12)H}=.

  • 289. Факторіальні кільця та їх застосування
    Курсовые работы Математика и статистика

     

    1. Алгебра і теорія чисел, ч.1. ЗавалоС.Т., КостарчукВ.М., ХацетБ.І. Видавниче обєднання «Вища школа», 1974, 464с.
    2. Алгебра і теорія чисел, ч.2. ЗавалоС.Т., КостарчукВ.М., ХацетБ.І. Видавниче обєднання «Вища школа», 1976, 384с.
    3. Алгебра и теория чисел: Учебное пособие для педагогических институтов.М.: Высшая школа, 1979, 559с., ил.
    4. Збірник задач з теорії чисел. [Навчальний посібник для студентів фізико-математичного факультету] За ред. І.О. Рокіцького, Вінниця, 2001115с.
    5. Збірник задач з алгебри. [навчальний посібник для студентів фізико-математичного факультету] За ред. І.О. Рокіцького, Вінниця, 2002176с.
    6. Алгебра і теорія чисел: Практикум. Частина 2 /С.Т.Завало, С.С. Левіщенко, В.В. Пилаєв, І.О. Рокіцький. К.: Вища школа Головне видавництво, 1986. 364с.
    7. Збірник задач і вправ з теорії чисел. Є.П. Морокішко. Центр «Магістр-S», 1995р. 158с.
  • 290. Фигуры постоянной ширины. Треугольник Рело
    Курсовые работы Математика и статистика

    Не окажется ли роторно-поршневой двигатель всего лишь промежуточной стадией освоения водорода как топлива для автомобилей? Акихиро Кашиваги руководитель проекта уверен в его перспективности: "Водородный РПД "загрязняет" атмосферу только водой. Renesis, конечно, проигрывает в эффективности приводу на базе топливных элементов, однако возможность совместного использования традиционного бензина и водорода дают потребителю массу преимуществ. Но самый большой плюс подобной конструкции, с точки зрения г-на Кашиваги, заключается в сравнительной дешевизне производства водородного РПД. Тем не менее в соревновании с обычным автомобилем Mazda RX-8 Hydrogen RE пока проигрывает. Даже если отвлечься от проблем, связанных с добычей дешевого водорода (в чистом виде этот газ в природе не встречается), тот факт, что машина до сих пор не дошла до массового потребителя, говорит о многом. Предполагаемые розничные цены и стоимость обслуживания при повседневной эксплуатации на сегодняшний день настолько высоки, что продажи RX-8 Hydrogen RE совершенно бессмысленны. Действительно, в пересчете на европейскую валюту ежемесячный лизинговый платеж составляет около трех тысяч евро, что за 30-месячный период составит 90000 евро. Для сравнения, самая дешевая версия бензиновой RX-8 обходится российскому покупателю чуть дороже $45 000.

  • 291. Философия А.Ф. Лосева в математике
    Курсовые работы Математика и статистика

    Не однозначно отрицательным было отношение А.Ф. Лосева к логицизму. Как отмечает Троицкий, с одной стороны Лосеву импонировали начинания некоторых выдающихся ученых, приступивших на рубеже 19-20-х веков к строительству оснований математике на аксиоматических принципах. Подобно тому, как приверженцы методов Гильберта получали многочисленные истины из немногих базовых утверждений-аксиом, так и Лосев последовательно выводил и отдельные математические понятия, и развернутые теоремы. Однако, с другой стороны, для него были неприемлемы многие особенности гильбертовской школы. Это, как отмечает Троицкий, и демонстративный формализм, т.е. сосредоточение на проблемах непротиворечивости вывода при игнорировании содержательных интерпретаций, это и установка на строго обозримые «финитные» методы рассуждений, это и самозамкнутость гильбертовской теории доказательств [1, с. 815]. По определению В.П. Троицкого, гильбертовская программа спасения классической математики от парадоксов состоит в том, что математика «должна быть сформирована в виде формальной аксиоматической теории, после чего следует доказать ее непротиворечивость, т.е. установить, что в этой формальной аксиоматической теории нельзя доказать противоречие». Сами доказательства при этом становятся «предметом специальной математической дисциплины названной Д. Гильбертом математикой, или теорией доказательств» [1, с. 815]. Данная программа полагалась к реализации для арифметики, функционального анализа и, в перспективе, геометрии. Далее выяснилось, что для всякой математической теории можно сформулировать вполне осмысленное, но недоказуемое и, вместе, неопровержимое утверждение, т.е. внутри всякой такой теории, содержательно достаточно богатой, гарантировано присутствие сомнительной ее составляющей. Также прояснился и тот факт, что непротиворечивость данной формальной теории, та в свою очередь нуждается в новом расширении. Потому доказательство непротиворечивости «извне» незавершимо. Таким образом, было строго доказано наличие принципиальных ограничений на строгость доказательств в математике. Это фактически указывало на необходимость выхода за пределы математики в объемлющие ее области, причем, как указывает Троицкий, по двум путям: либо путаться преодолеть барьер «за счет отказа от прежнего экстремизма и созданием новых формальных методов и через них повторного обращения к проблеме существования математических объектов, либо развивать более содержательную «метаматематику», действительно конструируя такие объекты из некоторых первооснов и уже не прибегая к математическим формализмам». [1, с. 816] Первым путем и по сей день следуют многие специалисты по основаниям математики, по второму пути пошел А.Ф. Лосев.

  • 292. Формации конечных групп
    Курсовые работы Математика и статистика

  • 293. Формирование интереса к урокам математики
    Курсовые работы Математика и статистика

    Многие школьные учебники математики решают эти проблемы. Для развития интереса к предмету в них есть занимательные задачи, система упражнений, которая формирует необходимые умения и навыки, прикладные вопросы, показывающие связь математики с другими областями знаний. Конечно, в учебниках мы встречаем и исторические страницы. Читая их, узнаем о появлении и развитии математических понятий, возникновении и совершенствовании методов решения задач. И тем не менее творчески работающему учителю тесно в рамках того исторического содержания, которое приводится в учебнике. Сведения из истории науки расширяют кругозор учеников, показывают диалектику предмета. Поэтому так важно, чтобы исторические мотивы искусно вплетались в ткань урока математики, заставляя детей удивляться, думать и восхищаться богатейшей историей этой многогранной науки. Формы подачи исторического материала могут быть различными начиная от простых (беседа учителя, короткие сообщения учеников на заданную тему, решение исторических задач, разгадывание софизмов, выпуск стенгазет) до более глубоких и сложных - таких, как историко-математическая конференция, защита рефератов по вопросам истории математики. В учебниках математики 5-6-х классов (автор Н.Я.Виленкин и др.) сведения по истории предмета выделены в специальные разделы. Из них ученики узнают о древних единицах измерения длины, площади, массы. Интересны сведения о системе записи чисел у разных народов. Короткие биографии ученых- математиков рассказывают об их важнейших открытиях. Однако структура размещения таких разделов меняется начиная с 7-го класса, когда исторические сведения приводятся уже в конце учебника. Это снижает значимость исторического материала, изменяет отношение к нему учеников. Хорошо, если учитель хотя бы иногда дает задание прочитать последние страницы учебника. Но часто, выполняя программу, реализуя математическое содержание, педагог забывает об историческом. И стоит ли винить его в этом? Ведь не на каждом математическом факультете педагогического вуза преподается история математики. Можно ли себе представить, что учитель литературы, изучая, например, произведения Ф.М.Достоевского или Л.Н.Толстого, не говорил бы на уроках об исторической эпохе, в которую жили эти писатели? Но в программах по математике на вопросы исторического характера не предусматривается ни одного часа, хотя известно, что история и математика неразделимы. И все-таки опытный учитель никогда не начнет изложения новой темы, не говоря о новом разделе математики, без вводной исторической части, вызывающей интерес и внимание учеников. Как, знакомя учеников с начальными понятиями геометрии, не рассказать о греческой математике? В Древней Греции геометрию причисляли к семи свободным искусствам наряду с грамматикой, риторикой, диалектикой, арифметикой, астрономией и музыкой. Такие ученые, как Пифагор и Платон, считали, что окружающая природа устроена по определенному плану, поэтому красоту окружающего мира, по их мнению, можно было познать с помощью математики. Именно древнегреческий ученый Евклид, систематизируя геометрические знания, написал величайший труд "Начала", который почти на два тысячелетия стал учебником геометрии. Евклиду принадлежат также сочинения по механике, оптике, музыке. Известны его заслуги и в астрономии. Евклиду приписываются также несколько теорем и новых доказательств. Потом еще не раз на уроках геометрии мы будем возвращаться к Евклиду. Изучая аксиомы геометрии, сравниваем понятия, данные в современном учебнике и в "Началах". Доказывая теорему Пифагора, говорим, что ею заканчивается первая книга "Начал". При построении правильных многоугольников опять звучит это имя. XIII книга "Начал" посвящена платоновым телам - правильным многогранникам, красотой которых восхищаемся на уроках стереометрии. Рассматривая вопросы дифференциального и интегрального исчислений на уроках анализа, говорим о том, что идеи, положенные в их основу Ньютоном и Лейбницем в XVII в., уходят своими корнями к методу исчерпывания, открытому еще Евклидом и Архимедом. Так история математики помогает понять не только логику развития предмета, но и показывает яркие примеры ученых, прошедших трудный путь открытия истины. Известно, что уже при постройке первой египетской пирамиды Джосера в Саккаре (около 2800 лет до н.э.) древние зодчие были знакомы с правилами построения так называемых несоизмеримых отрезков, т.е. таких, длины которых нельзя выразить рациональной дробью. Вместе с учениками можно выполнить геометрические построения и еще раз, повторяя теорему Пифагора, вычислить длины диагоналей прямоугольников, изображенных на рисунке. Так, вводя на уроке алгебры понятие иррационального числа, можно геометрически и исторически помочь школьникам понять и почувствовать его суть. Эффективным и занимательным приемом является также математический софизм. Софизм - это доказательство заведомо ложного утверждения. Причем ошибка в доказательстве искусно замаскирована. Группу древнегреческих философов, живущих в V-IV вв. до н.э., называли софистами. Они достигли большого искусства в логике. Ученикам VII-VIII классов уже можно привести софизм об Ахиллесе и черепахе. Ахиллес, бегущий в десять раз быстрее черепахи, не сможет ее догнать. Пусть черепаха на сто метров впереди Ахиллеса. Когда Ахиллес пробежит эти сто метров, черепаха будет впереди него на десять метров. Пробежит Ахиллес и эти десять метров, а черепаха окажется впереди на один метр и т.д. Расстояние между ними все время сокращается, но никогда не обращается в нуль. Значит, Ахиллес никогда не догонит черепаху. Сколько восторгов, мнений, споров, а главное - неподдельного интереса и жажды знаний вызывает у учеников этот исторический софизм. Тут же разбираем и чисто геометрическое ложное утверждение, пытаясь найти искусно скрытую ошибку. Докажем, что все (!) треугольники равнобедренные. Рассмотрим произвольный треугольник АВС. Проведем в нем биссектрису угла В и серединный перпендикуляр к стороне АС. Точку их пересечения обозначим через O. Из точки O опустим перпендикуляр ОД на сторону АВ и перпендикуляр ОЕ на сторону ВС. Легко доказывается, что ОА = ОС и ОД = ОЕ. Следовательно, прямоугольные треугольники АОД и СОЕ равны по гипотенузе и катету. Отсюда <ДАО = <ЕСО. Кроме того, <ОАС = <ОСА, так как треугольник АОС - равнобедренный. В итоге получаем: <ВАС = <ДАО + <ОАС = <ЕСО + <ОСА = <ВСА. Итак, мы доказали, что <ВАС = <ВСА, значит, треугольник АВС - равнобедренный и АВ = ВС.

  • 294. Формула Грина
    Курсовые работы Математика и статистика

    Пусть ? - %20(">кусочно-гладкая поверхность <http://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D0%B2%D0%B5%D1%80%D1%85%D0%BD%D0%BE%D1%81%D1%82%D1%8C> (p = 2) в трёхмерном евклидовом пространстве (n = 3), .%20%d0%a2%d0%be%d0%b3%d0%b4%d0%b0%20%d1%86%d0%b8%d1%80%d0%ba%d1%83%d0%bb%d1%8f%d1%86%d0%b8%d1%8f%20%d0%b2%d0%b5%d0%ba%d1%82%d0%be%d1%80%d0%bd%d0%be%d0%b3%d0%be%20%d0%bf%d0%be%d0%bb%d1%8f%20<http://ru.wikipedia.org/wiki/%D0%A6%D0%B8%D1%80%D0%BA%D1%83%D0%BB%D1%8F%D1%86%D0%B8%D1%8F_%D0%B2%D0%B5%D0%BA%D1%82%D0%BE%D1%80%D0%BD%D0%BE%D0%B3%D0%BE_%D0%BF%D0%BE%D0%BB%D1%8F>%20%d0%b2%d0%b4%d0%be%d0%bb%d1%8c%20%d0%b7%d0%b0%d0%bc%d0%ba%d0%bd%d1%83%d1%82%d0%be%d0%b3%d0%be%20%d0%ba%d0%be%d0%bd%d1%82%d1%83%d1%80%d0%b0%20"> - дифференцируемое векторное поле <http://ru.wikipedia.org/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80%D0%BD%D0%BE%D0%B5_%D0%BF%D0%BE%D0%BB%D0%B5>. Тогда циркуляция векторного поля <http://ru.wikipedia.org/wiki/%D0%A6%D0%B8%D1%80%D0%BA%D1%83%D0%BB%D1%8F%D1%86%D0%B8%D1%8F_%D0%B2%D0%B5%D0%BA%D1%82%D0%BE%D1%80%D0%BD%D0%BE%D0%B3%D0%BE_%D0%BF%D0%BE%D0%BB%D1%8F> вдоль замкнутого контура %20%d1%80%d0%be%d1%82%d0%be%d1%80%d0%b0%20<http://ru.wikipedia.org/wiki/%D0%A0%D0%BE%D1%82%D0%BE%D1%80_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)>%20(%d0%b2%d0%b8%d1%85%d1%80%d1%8f)%20%d0%bf%d0%be%d0%bb%d1%8f%20%d1%87%d0%b5%d1%80%d0%b5%d0%b7%20%d0%bf%d0%be%d0%b2%d0%b5%d1%80%d1%85%d0%bd%d0%be%d1%81%d1%82%d1%8c%20"> равна потоку <http://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D1%82%D0%BE%D0%BA_%D0%B2%D0%B5%D0%BA%D1%82%D0%BE%D1%80%D0%BD%D0%BE%D0%B3%D0%BE_%D0%BF%D0%BE%D0%BB%D1%8F> ротора <http://ru.wikipedia.org/wiki/%D0%A0%D0%BE%D1%82%D0%BE%D1%80_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)> (вихря) поля через поверхность ?, ограниченную контуром:

  • 295. Циклоида
    Курсовые работы Математика и статистика

    В самом начале XVII века юный Галилей пытался экспериментально проверить свою догадку о том, что свободное падение равноускоренное движение. Когда он перенес наблюдения с Пизанской башни в лаборатории, ему стало очень мешать то, что тела падают «слишком быстро». Чтобы замедлить это движение, Галилей решил заменить свободное падение тел их движением по наклонной плоскости, предположив, что и оно будет равноускоренным. Проводя эти опыты, Галилей обратил внимание на то, что в конечной точке величина скорости тела, скатившегося по наклонной плоскости, не зависит от угла наклона плоскости, а определяется только высотой H и совпадает с конечной скоростью тела, свободно упавшего с той же высоты (как вы хорошо знаете, в обоих случаях |v?|=Изучив движения по наклонным плоскостям, Галилей перешел к рассмотрению движения материальной точки под действием силы тяжести по ломаным линиям. Сравнивая времена движения по различным ломаным, соединяющим фиксированную пару точек А и В, Галилей заметил, что если через эти две точки А, В провести четверть окружности и вписать в нее две ломаные М и L, такие, что ломаная L «вписана» в ломаную М, то материальная точка из А в В быстрее попадает по ломаной М, чем по ломаной L. Увеличивая у ломаной число звеньев и переходя к пределу, Галилей получил, что по четверти окружности, соединяющей две заданные точки, материальная точка спустится быстрее, чем по любой вписанной в эту четверть окружности ломаной. Из этого Галилей сделал ничем не аргументированный вывод, что четверть окружности, соединяющая пару заданных точек А, В (не лежащих на одной вертикали), и будет для материальной точки, движущейся под действием силы тяжести, линией наискорейшего спуска (позже линию наискорейшего спуска стали называть брахистохроной). Впоследствии выяснилось, что это утверждение Галилея было не только необоснованным, но и ошибочным.

  • 296. Частные случаи дифференциальных уравнений
    Курсовые работы Математика и статистика

    Вывод: Примером рассмотренного звена может являться механический редуктор, делитель напряжения, индукционные датчики и т.д. Но беэынерционное звено является некоторой идеализацией реальных звеньев. В действительности ни одно звено не может равномерно пропускать все частоты от нуля до бесконечности. Обычно к такому виду сводится одно из реальных звеньев , рассмотренных ниже , если можно пренебречь влиянием динамических процессов.

  • 297. Частотно-временной анализ сигналов
    Курсовые работы Математика и статистика

    Итак, частотно-временной анализ предназначен для выявления локальных частотно-временных возмущений сигнала. Вследствие кратковременности таких возмущений, сам сигнал может рассматриваться как заданный в L2 т.е. для одномерных сигналов на всей действительной оси с нормой . Следовательно, базисные функции, которые получили название вейвлетов, также должны принадлежать L2 и быстро убывать приТогда, чтобы перекрыть такими базисными функциями все возможные временные положения сигнала, необходимо, чтобы базисные функции представляли собой набор смещенных во времени функций. Удобнее всего, если этот набор образуется из одной и той же "материнской" функции (прототипа), сдвинутой по оси t т.е. Чтобы обеспечить частотный анализ, базисная функция должна иметь еще один аргумент масштабный коэффициент, который является аналогом частоты в Фурье-анализе. Тогда базисные функции для частотно-временного анализа будут иметь вид

  • 298. Чисельні методи розв’язування крайових задач для звичайних диференціальних рівнянь
    Курсовые работы Математика и статистика

    MultipleListPlot[{{0.5,0.154796},{0.51,0.146438},{0.52,0.138265},{0.53,0.130272},{0.54,0.122456},{0.55,0.114812},{0.56,0.107336},{0.57,0.100024},{0.58,0.0928731},{0.59,0.0858792},{0.6,0.079039},{0.61,0.0723491},{0.62,0.0658064},{0.63,0.0594079},{0.64,0.0531504},{0.65,0.0470312},{0.66,0.0410475},{0.67,0.0351966},{0.68,0.0294758},{0.69,0.0238829},{0.7,0.0184152},{0.71,0.0130705},{0.72,0.00784647},{0.73,0.00274101},{0.74,-0.002248},{0.75,-0.00712262},{0.76,-0.0118848},{0.77,-0.0165364},{0.78,-0.0210793},{0.79,-0.0255153},{0.8,-0.029846},{0.81,-0.0340732},{0.82,-0.0381983},{0.83,-0.0422231},{0.84,-0.0461488},{0.85,-0.049977},{0.86,-0.0537091},{0.87,-0.0573463},{0.88,-0.06089},{0.89,-0.0643414},{0.9,-0.0677017},{0.91,-0.0709721},{0.92,-0.0741536},{0.93,-0.0772473},{0.94,-0.0802542},{0.95,-0.0831754},{0.96,-0.0860117},{0.97,-0.0887641},{0.98,-0.0914334},{0.99,-0.0940204},{1.,-0.096526},{1.01,-0.0989509},{1.02,-0.101296},{1.03,-0.103561},{1.04,-0.105748},{1.05,-0.107857},{1.06,-0.109889},{1.07,-0.111844},{1.08,-0.113722},{1.09,-0.115525},{1.1,-0.117252},{1.11,-0.118904},{1.12,-0.120482},{1.13,-0.121985},{1.14,-0.123415},{1.15,-0.124771},{1.16,-0.126054},{1.17,-0.127264},{1.18,-0.128401},{1.19,-0.129466},{1.2,-0.130459},{1.21,-0.131379},{1.22,-0.132228},{1.23,-0.133004},{1.24,-0.133708},{1.25,-0.134341},{1.26,-0.134902},{1.27,-0.135391},{1.28,-0.135808},{1.29,-0.136154},{1.3,-0.136427},{1.31,-0.136628},{1.32,-0.136757},{1.33,-0.136814},{1.34,-0.136798},{1.35,-0.136709},{1.36,-0.136547},{1.37,-0.136312},{1.38,-0.136004},{1.39,-0.135621},{1.4,-0.135164},{1.41,-0.134633},{1.42,-0.134026},{1.43,-0.133344},{1.44,-0.132586},{1.45,-0.131752},{1.46,-0.130841},{1.47,-0.129852},{1.48,-0.128786},{1.49,-0.127641},{1.5,-0.126416}},{{0.5,0.159038},{0.51,0.150628},{0.52,0.142405},{0.53,0.134363},{0.54,0.126498},{0.55,0.118807},{0.56,0.111285},{0.57,0.103929},{0.58,0.0967336},{0.59,0.0896968},{0.6,0.0828146},{0.61,0.0760838},{0.62,0.0695011},{0.63,0.0630634},{0.64,0.0567678},{0.65,0.0506112},{0.66,0.0445911},{0.67,0.0387046},{0.68,0.0329491},{0.69,0.0273222},{0.7,0.0218214},{0.71,0.0164443},{0.72,0.0111888},{0.73,0.00605251},{0.74,0.00103346},{0.75,-0.00387045},{0.76,-0.00866119},{0.77,-0.0133407},{0.78,-0.0179107},{0.79,-0.0223731},{0.8,-0.0267296},{0.81,-0.0309819},{0.82,-0.0351315},{0.83,-0.0391799},{0.84,-0.0431288},{0.85,-0.0469795},{0.86,-0.0507334},{0.87,-0.0543918},{0.88,-0.0579562},{0.89,-0.0614276},{0.9,-0.0648073},{0.91,-0.0680964},{0.92,-0.0712961},{0.93,-0.0744074},{0.94,-0.0774314},{0.95,-0.0803691},{0.96,-0.0832213},{0.97,-0.085989},{0.98,-0.0886731},{0.99,-0.0912744},{1.,-0.0937936},{1.01,-0.0962317},{1.02,-0.0985892},{1.03,-0.100867},{1.04,-0.103065},{1.05,-0.105185},{1.06,-0.107227},{1.07,-0.109192},{1.08,-0.11108},{1.09,-0.112891},{1.1,-0.114627},{1.11,-0.116287},{1.12,-0.117872},{1.13,-0.119382},{1.14,-0.120819},{1.15,-0.122181},{1.16,-0.123469},{1.17,-0.124684},{1.18,-0.125825},{1.19,-0.126894},{1.2,-0.12789},{1.21,-0.128813},{1.22,-0.129664},{1.23,-0.130442},{1.24,-0.131148},{1.25,-0.131781},{1.26,-0.132342},{1.27,-0.132831},{1.28,-0.133248},{1.29,-0.133592},{1.3,-0.133863},{1.31,-0.134062},{1.32,-0.134189},{1.33,-0.134242},{1.34,-0.134222},{1.35,-0.134129},{1.36,-0.133962},{1.37,-0.133722},{1.38,-0.133407},{1.39,-0.133018},{1.4,-0.132554},{1.41,-0.132015},{1.42,-0.1314},{1.43,-0.13071},{1.44,-0.129943},{1.45,-0.129098},{1.46,-0.128177},{1.47,-0.127177},{1.48,-0.126099},{1.49,-0.124942},{1.5,-0.123705}},PlotLegend?{Mathematica,Rizn method},PlotJoined?{False,True},PlotPosition?{0.3,-0.5}]

  • 299. Числа "е" та "пі"
    Курсовые работы Математика и статистика

    Письмова історія числа p починається з єгипетського папірусу, датуємого приблизно 2000 роком до нашої ери, але воно було відомо ще древнім людям. Число p звернуло на себе увагу людей ще в ті часи, коли вони не вміли письмово викладати ні своїх знань, ні своїх переживань, ні своїх спогадів. З тих пір як перші натуральні числа 1,2,3,4,…стали нерозлучними супутниками людської думки, допомагаючи оцінювати кількості предметів або їхні довжини, площі або об'єми, люди познайомилися із числом p [21]. Тоді воно ще не позначалося однією з букв грецького алфавіту і його роль грало число 3. Неважко зрозуміти, чому числу p приділяли так багато уваги. Виражаючи величину відносини між довжиною окружності і її діаметром, воно з'явилося у всіх розрахунках пов'язаних із площею кругу або довжиною окружності. Але вже в далекій давнині математики досить швидко й не без подиву виявили, що число 3 не зовсім точно виражає те, що тепер відомо як число (пі). Безумовно, до такого висновку могли прийти тільки після того, як до ряду натуральних чисел додалися дробові або раціональні числа. Так єгиптяни одержали результат: .. Індуси в VVI століттях користувалися числом ,, китайці числом , а ще [21].

  • 300. Эйлеровы графы
    Курсовые работы Математика и статистика

    Обратно, нужно показать, что каждый связный граф, у которого степени вершин чётные, имеет эйлеров цикл. Докажем эту теорему, используя индукцию по числу вершин. Поскольку теорема тривиально справедлива при n3, начнём индукцию с n=3. Предположим, что каждый связный граф, имеющий менее k вершин, и все вершины которого обладают чётной степенью, содержит эйлеров цикл. Пусть G связный граф, содержащий k вершин, степени которых чётные. Допустим, что v1 и v2 - вершины графа G. Поскольку граф G связный, существует путь из v1 в v2 .Поскольку степень v2 чётная, существует неиспользованное ребро, по которому можно продолжить путь. Поскольку граф конечный, то путь, в конце концов, должен вернуться в v1 , и эйлеров цикл С1 можно считать построенным. Если С1 является эйлеровым циклом для G, тогда доказательство закончено. Если нет, то пусть G/ - подграф графа G, полученный удалением всех рёбер, принадлежащих С1. Поскольку С1 содержит чётное число рёбер, инцидентных каждой вершине, каждая вершина подграфа G/ имеет чётную степень.