Математическое моделирование
Методическое пособие - Компьютеры, программирование
Другие методички по предмету Компьютеры, программирование
рений.
Для стохастических характеристик можно построить гистограмму относительных частот - эмпирическую плотность распределения. С этой целью область предполагаемых значений характеристики Y разбивается на интервалы. В ходе эксперимента по мере измерений определяют число попаданий характеристики в каждый интервал и подсчитывают общее число измерений. После завершения эксперимента для каждого интервала вычисляют отношение числа попаданий характеристики к общему числу измерений и длине интервала. Для построенной гистограммы можно попытаться подобрать теоретический закон распределения. Делается это так же, как и при подготовке исходных данных моделирования.
Если искомая характеристика является стационарной случайной функцией времени y(t) и обладает свойством эргодичности, то для ее оценки вычисление среднего по времени заменяется вычислением среднего по множеству измерений при одном достаточно продолжительном эксперименте.
Для случайных нестационарных характеристик период моделирования T разбивается на отрезки с постоянным шагом Tm (прогоны или сечения), и запоминаются значения характеристики в конце каждого прогона. Проводится серия экспериментов с разными последовательностями случайных параметров модели. Затем измерения каждого сечения обрабатываются как при оценке случайных величин. В книге рассмотрена методика этих вычислений.
Процессы обработки измерений имитационного эксперимента направлены на получение интегральных характеристик, т. е. на сжатие данных.
Определение зависимостей характеристик от параметров системы. По результатам статистического моделирования может быть проведен анализ зависимостей характеристик от параметров системы и внешних воздействий. Для этого можно воспользоваться корреляционным, дисперсионным или регрессионным методами.
С помощью корреляционного анализа можно установить наличие связи между двумя или более случайными величинами. Оценкой связи служит коэффициент корреляции при наличии линейной связи между величинами и нормальном законе их совместного распределения. Коэффициент корреляции, равный единице по абсолютной величине, свидетельствует о наличии функциональной нестохастической линейной связи между анализируемыми величинами. При равенстве нулю коэффициента корреляции связь отсутствует. Промежуточные значения коэффициента корреляции соответствуют наличию линейной связи с рассеянием или нелинейной корреляции.
Дисперсионный анализ можно использовать для установления относительного влияния различных факторов на значения выходных характеристик. При этом общая дисперсия характеристики разлагается на компоненты, соответствующие рассматриваемым факторам. По значениям отдельных компонентов делают вывод о степени влияния того или другого фактора на анализируемую характеристику.
Когда все факторы в эксперименте являются количественными, можно найти аналитическую зависимость между характеристиками и факторами. Для этого используются методы регрессионного анализа. Найденная зависимость называется эмпирической моделью. Регрессионный анализ заключается в том, что выбирается вид соотношения между зависимыми и независимыми переменными, по экспериментальным данным вычисляются параметры выбранной зависимости и оценивается качество аппроксимации экспериментальных данных моделью. Если качество неудовлетворительное, берется зависимость другого вида, и процедура повторяется.
К анализу результатов моделирования можно отнести задачу анализа чувствительности модели к вариациям ее параметров. Под анализом чувствительности понимают проверку устойчивости характеристик процесса функционирования системы к возможным отклонениям значений параметров.
Анализ результатов моделирования позволяет уточнить множество информативных параметров модели, что может привести к существенному изменению первоначального вида концептуальной модели; найти функциональные зависимости характеристик и параметров, что иногда дает возможность создать аналитические модели системы, или определить весовые коэффициенты критерия эффективности.
Использование результатов моделирования. В конечном счете результаты моделирования используются для принятия решения о работоспособности системы, для выбора лучшего проектного варианта или для оптимизации системы. Решение о работоспособности принимается по тому, выходят или не выходят характеристики системы за установленные границы при любых допустимых изменениях параметров. При выборе лучшего варианта из всех работоспособных вариантов выбирается тот, у которого максимальное значение критерия эффективности. Наиболее общей и сложной является оптимизация системы: требуется найти такое сочетание значений переменных параметров системы или рабочей нагрузки из множества допустимых, которое максимизирует значение критерия эффективности:
при соблюдении ограничений на все п характеристик
Если выходная характеристика yi, является случайной величиной с некоторой плотностью распределения f(yi), целесообразно ввести в задачу оптимизации стохастические ограничения следующего вида:
где - минимально допустимая вероятность того, что конкретные значения у, не выйдут за ограничивающие пределы.
Для нестационарных систем выходная характеристика уi зачастую является случайной функцией с плотностью распределения, изменя?/p>