Математическое моделирование
Методическое пособие - Компьютеры, программирование
Другие методички по предмету Компьютеры, программирование
?ность распределения. Гистограмма аппроксимируется плавной кривой. Полученная кривая последовательно сравнивается с кривыми плотности распределения различных теоретических законов распределения. Выбирается один из законов по наилучшему совпадению вида сравниваемых кривых. По эмпирическим значениям вычисляют параметры этого распределения. Затем выполняют количественную оценку степени совпадения эмпирического и теоретического распределения по тому или другому критерию согласия, например, Пирсона (хи-квадрат), Колмогорова, Смирнова, Фишера или Стьюдента. Вопросы подбора вида закона распределения детально разработаны в математической статистике.
Особую сложность представляет сбор данных по случайным параметрам, которые являются функциями времени. В первую очередь такие параметры характерны для внешних воздействий. Пренебрежение фактами нестационарности параметров, которое зачастую имеет место в практике моделирования, приводит к существенным нарушениям адекватности модели.
Аппроксимация функций. Для каждого элемента системы существует функциональная связь между параметрами входных воздействий на этот элемент и его выходными характеристиками. Вид функциональной зависимости для одних элементов бывает очевиден, для других может быть легко выявлен исходя из природы функционирования. Однако для некоторых элементов может быть получена только совокупность экспериментальных данных о количественных значениях выходных характеристик при различных значениях параметров. В этом случае возникает необходимость ввести некоторую гипотезу о характере функциональной зависимости, т. е. аппроксимировать ее определенным математическим уравнением. Поиск математических зависимостей между двумя или более переменными по собранным опытным данным- может выполняться с помощью методов регрессионного, корреляционного или дисперсионного анализа.
Предварительно для описания определенного элемента вид уравнения задает исследователь. При двух переменных это делается достаточно просто по результатам сравнения графика, на который нанесены экспериментальные точки, с графиками наиболее распространенных аппроксимирующих функций, таких как прямая, парабола, гипербола, экспонента и т. д. Затем методами регрессионного анализа вычисляются константы выбранного уравнения таким образом, чтобы обеспечить наилучшее приближение кривой к экспериментальным данным независимо от того, насколько хорошо выбран вид кривой. Зачастую приближение оценивается по критерию наименьших квадратов.
Для выяснения того, насколько точно выбранная зависимость согласуется с опытными данными, используется корреляционный анализ. Коэффициент корреляции лежит в пределах от 0 до 1, что соответствует изменению степени согласования от полного отсутствия корреляции до случая, когда все экспериментальные точки лежат точно на кривой.
Выдвижение гипотез. По части параметров, которые отражают новые элементы будущей системы или новые условия функционирования, отсутствует возможность сбора фактических данных. Для таких параметров выдвигаются гипотезы об их возможных значениях. Важно, чтобы гипотезы выдвигали эксперты-специалисты, которые достаточно хорошо представляют создаваемую систему или новые внешние воздействия на систему. Больший успех может быть достигнут, если представляется возможность получить сведения от группы специалистов. В этом случае можно уменьшить степень субъективности и воспользоваться хорошо отработанными методиками экспертных оценок. При проведении данной работы определенные сведения можно получить в результате анализа функционирования аналогичных, систем или прототипов будущей системы.
Заканчивается этап сбора и обработки исходных данных классификацией на внешние и внутренние, постоянные и переменные, непрерывные и дискретные, линейные и нелинейные, стационарные и нестационарные, детерминированные и стохастические. Для переменных количественных параметров, которыми может варьировать исследователь в ходе моделирования, определяются границы их изменений, а для дискретных - возможные значения.
3. Разработка математической модели
Обобщенные модели. Концептуальная модель и количественные исходные данные служат основой для разработки математической модели. Создание математической модели преследует две основные цели: 1) дать формализованное описание структуры и процесса функционирования системы для однозначности их понимания; 2) попытаться представить процесс функционирования в виде, допускающем аналитическое исследование системы.
Разработка единой методики создания математических моделей, очевидно, не представляется возможной. Это обусловлено большим разнообразием классов систем. Системы могут быть статические и динамические, со структурным или программным управлением, с постоянной или переменной структурой, с постоянным (жестким) или сменным (гибким) программным управлением. По характеру входных воздействий и внутренних состояний системы подразделяются на непрерывные и дискретные, линейные и нелинейные, стационарные и нестационарные, детерминированные и стохастические. При исследовании ВС может быть получено такое же разнообразие моделей в зависимости от ориентации, а также от степени стратификации и детализации.
Для определенных классов систем разработаны формализованные схемы и математические методы, которые позволяют описать функционирование системы, а в некото