Реализация проблемного обучения на кружковых занятиях учащихся 5-го класса
Дипломная работа - Педагогика
Другие дипломы по предмету Педагогика
?ченик: Есть узлы, в которых соединяются две линии, три линии, четыре линии и пять линий.
Учитель: Правильно, как же тогда можно разделить все эти узлы на какие-то подгруппы, как вы думаете?
Ученик: Узлы, в которых сходится четное количество линий, и узлы, в которых сходится нечетное количество линий.
Учитель: Исходя из этого, как можно назвать эти узлы?
Ученик: Четные и нечетные.
Учитель: Правильно. Еще раз сформулируйте, какие узлы называются четными, а какие нечетными.
Ученик: Четным называется узел, в котором сходится четное количество линий. Нечетным называется узел, в котором сходится нечетное количество линий.
Учитель: Теперь, с учетом только что сформулированных определений и рисунков, попытайтесь вывести правило, с помощью которого можно было бы понять, можно данную фигуру нарисовать одним росчерком.
Учащиеся самостоятельно выводят правило и вместе формулируют его, на основании сформулированных ранее определений и применения этих определений к рисункам.
Ученик: Если в фигуре (на графе) больше двух нечетных узлов, то ее нельзя нарисовать одним росчерком.
Учитель: Вы правы. Вы сформулировали важное правило, мы еще потренируемся его применять на практике. А теперь вернемся к задаче, с которой мы начали наше занятие. Как же возможно ее решить с учетом сделанных нами выводов, воспользовавшись сформулированным правилом?
Ученик: Решим эту задачу, изобразив рисунок с помощью графа. Узлами обозначим берега и острова, и семь кривых, которые будут обозначать мосты.
Ученик: Если бы существовал искомый маршрут, то этот рисунок можно было бы вычертить одним росчерком.
Учитель: Вы правы. Долго бы спорили жители города, если бы через Кёнигсберг не проезжал великий математик Леонард Эйлер. Он заинтересовался спором и разрешил его. Подумайте, как мог рассуждать великий ученый?
Возможны различные варианты рассуждений, но после обсуждения всех вариантов должны прийти к следующему:
Ученик: Возьмем один из островов, например остров D. К нему ведут три моста. Допустим, прогулка начинается вне этого моста, тогда, поскольку по каждому мосту можно пройти только один раз, заканчиваться она должна на этом острове.
Учитель: Хорошо, но у нас еще есть два берега и еще один остров, еще пять мостов. Какие следует проводить рассуждения дальше?
Ученик: Рассмотрим теперь остров А. К этому острову ведет пять мостов. Допустим, прогулка началась вне острова А, тогда она должна закончиться на этом мосту, как и в случае с островом D. 5, как и 3 - число нечетное. Значит у каждого из островов нечетное количество мостов.
Но и на берег С, и на берег В также ведут по три моста, и к ним применимо то же рассуждение. Каждый из участков суши, обозначенных буквами А, В, С и D, будет либо началом, либо концом прогулки. Мы никогда не сможем, попасть в то место, откуда вышли, пройдя при этом каждый мост только один раз.
Учитель: Какой же можно сделать вывод из решения этой задачи?
Ученик: Задача об обходе мостов оказалась равносильной задаче о рисовании одним росчерком. Решение задачи о мостах доказывает, что изображенную фигуру нельзя нарисовать одним росчерком. Так же обосновывается наше правило для любой фигуры.
Учитель: Мы с вами хорошо поработали. Вывели правило о возможности вычерчивания фигур одним росчерком, решили задачу о кёнигсбергских мостах, тем самым подтвердив сформулированное правило. Теперь потренируемся применять полученные знания на практике.
Занятие №8 (фрагмент)
Тема: Геометрия нитей.
Цели: установление опытным путем зависимости количества узлов и количества промежутков от вида шнура; применение этих свойств при решении задач.
III этап: Введение нового материала.
Учитель: Необходимо решить следующую задачу:
Задание №1. Из Нижнего Новгорода в Астрахань (и обратно) ежедневно, в один и тот же час, выходит по пароходу. По течению реки пароход проходит этот путь за 4 дня, а обратно (против течения) - за 5 дней. Сколько пароходов встретит на своем пути до Астрахани пароход, вышедший из Нижнего Новгорода? Каково минимальное число пароходов, необходимое для обслуживания этого маршрута?
Учащимся предлагается самостоятельно попытаться решить эту задачу. Через некоторое время обсуждаются возможные варианты решения. Так как решение этой задачи общепринятыми методами вызывает значительные сложности, учащимся, скорее всего, не удастся решить её. Учителю следует вместе с учащимися обосновать, почему не подходят для решения этой задачи уже знакомые методы (недостаточность данных и т.д.).
Учитель: Решение этой задачи можно провести совсем просто, используя свойства своеобразной "геометрии нитей". Так как нам эти свойства пока неизвестны, необходимо вывести их с помощью проведения опыта.
Учащиеся должны будут самостоятельно провести опыты, а затем сделать выводы из этих опытов, т.е. необходимые для решения данной задачи свойства.
Учащимся раздаются тонко скрученные шнуры (нити) и предлагается сделать на этих шнурах произвольное число узлов, не связывая концы шнура между собой (на открытом шнуре).
Учитель: Теперь, каждому необходимо подсчитать количество узлов и количество промежутков между ними на своем шнуре, а результаты сообщить мне для занесения в общую таблицу, изображенную на доске. Например: