Учебно-методический комплекс по дисциплине специальность 050102 Биология, со специализацией Фитодизайн
Вид материала | Учебно-методический комплекс |
- Учебно-методический комплекс по дисциплине Cпециальность 050102 Биология Квалификация, 1401.18kb.
- Комплекс по дисциплине Cпециальность 050102 Биология Чебоксары, 1288.79kb.
- Учебно-методический комплекс по дисциплине «Генетика» Специальность 050102. 65 Биология, 126.61kb.
- Учебно методический комплекс дисциплины «зоология» Специальность 050102. 65-Биология, 296.3kb.
- Учебно-методический комплекс по дисциплине «гистология с основами эмбриологии» Специальность, 127.3kb.
- Учебно-методический комплекс по дисциплине «Юридическая психология специальность «Юриспруденция», 970.99kb.
- Учебно-методический комплекс по дисциплине, 291.59kb.
- Учебно-методический комплекс по дисциплине, 420.79kb.
- Учебно-методический комплекс дисциплины Молекулярная и промышленная биотехнология Специальность, 49.3kb.
- Программа учебной практики методика преподавания химии Направление 050000 Образование, 796.83kb.
БЕЛКИ
Белки как важнейший субстрат жизни. Элементарный состав белков.
Выделение белков. Гомогенизация материала. Извлечение: высаливание, осаждение органическими растворителями, осаждение солями тяжелых металлов, электрофорез, электрофокусировка, гельфильтрация, хроматография. 0чистка белков: диализ, ультрафильтрация, перекристаллизация. Оценка гомогенности белков.
Молекулярная масса белков. Понятие о физическом и химическом значениях молекулярной массы белков. Методы определения молекулярной массы белка: гравиметрический, гельфильтрационный, электрофоретический, химический.
Форма белковых молекул и методы ее изучения (двойное лучепреломление в потоке). Аминокислотный состав белков. Методы гидролиза белка (кислотный, щелочной, ферментативный). Селективный гидролиз до пептидов. Автоматический анализатор аминокислот. Характеристика постоянно и иногда встречающихся в составе белков аминокислот. Тонкое строение аминокислот. Водородные связи в кристаллах аминокислот. Закономерности содержания аминокислот в белках. Амфотерность и реакционная способность белков. Изоэлектрическое состояние белковой молекулы.
Пептиды. Природные пептиды: глутатион, карнозин, окситоцин, вазопрессин и др. Тонкое строение полипептидной цепи (валентные углы и расстояния между атомами).
Структура белковой молекулы. Работы А.Я. Данилевского и Э. Фишера. Доказательства полипептидной теории строения белка.
Первичная структура белков. Схема установления первичной структуры. Фенилизотиоцианатный метод Эдмана. Масс-спектрометрический метод. Характеристика первичной структуры А- и В- цепей инсулина, рибонуклеазы, α- и β- цепей гемоглобина и др. белков. Первичная структура и видовая специфичность белков (на примере инсулина). Связь первичной структуры и функций пептидов и белков.
Вторичная структура белков. Параметры α-спирали полипептидной цепи. Силы, удерживающие полипептидную цепь в α-конформации. Связь первичной и вторичной структур белковой молекулы (понятие о спиралеобразующих и спираленеобразующих сочетаниях аминокислотных остатков). Степень спирализации полипептидных цепей белков. β-Структура белковой молекулы.
Третичная структура белков. Методы ее выявления. Работы Дж. Кендрю, М. Перутца по рентгеноструктурному анализу третичной структуры миоглобина, субъединиц гемоглобина и лизоцима. Третичные структуры леггемоглобина, пепсина и аспартатаминотрансферазы. Типы связей, обеспечивающих поддержание третичной структуры. Гидрофобные зоны ("жирная капля") в молекулах глобулярных белков. Полная химическая структура лизоцима и миоглобина. Ориентация радикалов аминокислот в этих белках. Доменный принцип строения белковой молекулы. Динамичность третичной структуры. Саморегуляция полипептидной цепи.
Четвертичная структура белков. Субъединицы (протомеры) и эпимолекулы (мультимеры). Олигомерное и агрегированное состояние белка. Конкретные примеры четвертичной структуры (гемоглобин, вирус табачной мозаики и др.). Взаимосвязь структуры гемоглобина с его функцией. Типы связей между субъединицами в эпимолекуле. Понятие о контактных площадках у субъединиц, их комплементарности и принципе самосборки эпимолекул. Понятие о самосборке биологических структур.
Свойства белков. Химические, физические и биологические свойства.
Номенклатура и классификация белков. Простые и сложные белки. Фибриллярные и глобулярные белки. Характеристика отдельных групп белков: каталитически активные, белки-гормоны, регуляторные, защитные, токсические, транспортные, структурные, сократительные, рецепторные, белки-ингибиторы ферментов, белки вирусных оболочек.
ФЕРМЕНТЫ
Каталитическая (ферментативная) функция белков. Роль ферментов в явлениях жизнедеятельности. Биологический катализ как кооперативный процесс, запрограммированный во времени и пространстве. История открытия и изучения ферментов. Методы выделения и очистки ферментов.
Строение ферментов. Каталитический и активный центры. Понятие о субстратном и аллостерическом центрах. Взаимодействие перечисленных центров в процессе ферментативного катализа (динамическая модель фермента).
Молекулярная масса ферментов. Мономерная и мультимерная структура молекул ферментов. Строение рибонуклеазы и лизоцима – представителей ферментов-мономеров. Структура РНК-полимеразы, глутаматдегидрогеназы – представителей ферментов-мультимеров. Молекулярные формы ферментов. Изозимы лактатдегидрогеназы. Значение исследования изозимов для медицины, генетики и селекции. Мультиэнзимные комплексы, строение пируватдегидрогеназы декарбоксилирующей и синтетазы высших жирных кислот.
Механизм действия ферментов. ЕS-, ЕS΄- и ЕР-комплексы, роль их в понижении энергетического барьера реакции. Механизм действия ацетилхолинэстеразы. Изменение третичной и четвертичной структуры молекул ферментов в процессе ферментативного катализа. Кинетика ферментативных реакций. Субстратная константа (Кs) и константа Михаэлиса (Кт).
Зависимость скорости ферментативной реакции от концентрации субстрата и фермента. Способы выражения активности фермента.
Свойства ферментов: термолабильность, зависимость активности от значения рН среды, ионной силы раствора, специфичность, влияние на ферменты активаторов и ингибиторов. Конкурентное и неконкурентное ингибирование ферментов.
Номенклатура ферментов. Научная (Московская, 1961 г.) номенклатура. Систематические и рабочие (тривиальные) названия ферментов. Шифры ферментов.
Классификация ферментов. Классы ферментов: оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы и лигазы (синтетазы). Характеристика основных подклассов и подподклассов перечисленных классов.
Локализация ферментов в клетке.
Применение ферментов.
^ КОФЕРМЕНТЫ, ВИТАМИНЫ И НЕКОТОРЫЕ ДРУГИЕ
БИОАКТИВНЫЕ СОЕДИНЕНИЯ
Коферменты (коэнзимы) – органические кофакторы ферментов. Химическая природа и механизм действия некоторых коферментов (флавинмононуклеотид, флавинадениндинуклеотид, никотинамидадениндинуклеотид, никотинамидадениндинуклеотидфосфат, аденозинтрифосфорная кислота, коэнзим А, пиридоксальфосфат, нуклеозиддифосфосахара).
Витамины. Роль витаминов в питании человека и животных. Авитаминозы, гиповитаминозы, гипервитаминозы. Роль витаминов в растениях. Соотношение витаминов и коферментов. Классификация и номенклатура витаминов. Витамерия.
Жирорастворимые витамины. Витамин А (ретинол). Участие витамина А1 в зрительном акте. Витамин Д1 (кальциферол). Роль в фосфорно-кальциевом обмене. Витамин Е (токоферол). Участие в окислительно-восстановительных процессах. Витамин К (филлохинон), его отношение к системе свертывания крови. Викасол. Витамин G (убихинон). Витамин F (комплекс ненасыщенных жирных кислот).
Водорастворимые витамины. Витамин В1 (тиамин), химическая природа и механизм действия. Витамин В2 (рибофлавин), строение и участие в окислительно-восстановительных реакциях. Витамин В3 (пантотеновая кислота), участие в образовании коэнзима А. Витамин РР (никотиновая кислота и амид никотиновой кислоты), строение и участие в переносе атомов водорода в составе НАД. Витамин В6 (пиридоксин), его формы (пиридоксол, пиридоксаль, пиридоксамин), значение для реакций переаминирования. Витамин В12 (цианкобаламин). Витамин В15 (пангамовая кислота), его участие в переносе одноуглеродных фрагментов. Витамин Вс (птероилглутаминовая кислота). Витамин Вт (карнитин), его значение в обмене веществ у насекомых. Холин, его функция в качестве поставщика метильных групп. Витамин С (аскорбиновая кислота), строение. Витамин Р (рутин). Взаимообусловленность действия витаминов С и Р. Витамин Н (биотин). Витамин U.
Другие биоактивные соединения (антивитамины, антибиотики, телергоны).
^
ОБЩЕЕ ПОНЯТИЕ ОБ ОБМЕНЕ ВЕЩЕСТВ И ЭНЕРГИИ В ОРГАНИЗМЕ
Общие представления об обмене веществ. Современные представления о сущности жизни.
Обмен веществ и энергии – неотъемлемое свойство живого. Обмен веществ как закономерный, самосовершающийся процесс превращения материи в живых телах.
Анаболизм и катаболизм. Масштабы обмена веществ на Земле. Биосфера и ее геохимическая роль. Работы А.А. Вернадского. Промежуточный обмен веществ.
Энергетика обмена веществ. Понятие об уровне свободной энергии в органическом соединении и его изменении в процессе преобразования веществ. Макроэргические соединения и макроэргические связи. Различия в понятиях "энергия связи" и "макроэргическая связь". Важнейшие представители макроэргических соединений: глюкозо-1-фосфат, уридиндифосфоглюкоза, сахароза, ацетилкоэнзим А, креатинфосфат, аденозинтрифосфорная кислота, 1,3-дифосфоглицериновая кислота. Особая роль атомов Р и S в образовании макроэргических связей. Роль АТФ в энергетическом обмене. АТФ как аккумулятор, трансформатор и проводник энергии в процессе ее запасания и расходования в организме. Принципиальное отличие энергетики химических реакций в живой природе от таковой в неживой. Трансформация энергии в живых объектах. Общие принципы организации структур, ответственных за трансформацию энергии.
^
НУКЛЕИНОВЫЕ КИСЛОТЫ
История открытия и изучения нуклеиновых кислот.
Выделение нуклеиновых кислот. Химический состав нуклеиновых кислот. Характеристика пуриновых и пиримидиновых оснований. Минорные (иногда встречающиеся) основания. Д-рибоза и Д-2-дезоксирибоза. Два типа НК: дезоксирибонуклеиновые (ДНК) и рибонуклеиновые (РНК). Различия между ДНК и РНК по составу главных и минорных оснований, характеру углевода, молекулярной массе, локализации в клетке и функциям. Строение структурных элементов НК: нуклеотиды, нуклеозиды. Соединение нуклеотидов в полинуклеотиды. Нуклеотидный состав ДНК и РНК. Правила Чаргаффа. Комплементарные пары. Водородные связи между ними, гидрофобное взаимодействие.
Дезоксирибонуклеиновая кислота. Количественное содержание ДНК в организме и локализация ее в клетке (ядро, митохондрии, хлоропласты, центриоли). Молекулярная масса, форма молекул. Кольцевая форма ДНК некоторых фагов, митохондрий и хлоропластов. Одно- и двухцепочечные молекулы ДНК. Первичная структура ДНК. Проблема определения полной первичной структуры генома человека. Примеры изученных первичных структур геномов и отдельных генов. Вторичная структура ДНК (модель Дж. Уотсона и Ф. Крика). Формы ДНК: А-, В-, С-, Т-формы, Z-форма, SBS-форма. Динамичность вторичной структуры ДНК.
Принцип комплементарности пуриновых и пиримидиновых оснований и его реализация в структуре ДНК (водородные связи и стэкинг-взаимодействие). Палиндромы. Свойства ДНК. Плавление молекул ДНК. Третичная структура ДНК. Структура хроматина ядра и хромосомы.
Рибонуклеиновые кислоты, их классификация (тРНК, рРНК, мРНК, вирусная РНК). тРНК. Минорные основания в тРНК и их значение. Первичная структура тРНК. Вторичная структура тРНК (модель "клеверный лист"), функциональное значение отдельных участков молекулы тРНК. Третичная структура тРНК, неканонические функции тРНК. рРНК, ее содержание и локализация в клетке. Виды рРНК (23-29s, 16-18s, 5s и 5,8s) и их функции. Первичная структура 5s РНК. Первичная структура высокополимерных рРНК. Вторичная и третичная структура их (работы А.С. Спирина). Свойства мРНК высших организмов. мРНК как матрица для специфического биосинтеза белков.
^ ОБМЕН НУКЛЕИНОВЫХ КИСЛОТ
Пути распада нуклеиновых кислот. Фосфодиэстеразы и их участие в деструкции нуклеиновых кислот. Дезоксирибонуклеазы I и II, характер их каталитической активности. Рестриктазы. РНК-азы. Структура бычьей панкреатической рибонуклеазы и активного центра.
Обмен нуклеозидфосфатов. Пути их деструкции. Распад пиримидиновых и пуриновых оснований.
Механизм биосинтеза нуклеозидфосфатов. Механизм биосинтеза пиримидиновых оснований. Глутамин, глицин, формиат, СО2 и аспарагиновая кислота как исходные вещества для биосинтеза пуриновых нуклеотидов. Саморегуляция соотношения нуклеозид- и дезоксинуклеозидтрифосфатов в клетке.
Механизм биосинтеза ДНК. Комплементарный механизм обеспечения специфичности воспроизведения структуры при биосинтезе ДНК. Роль ДНК-затравки, ДНК-матрицы, ферменты ДНК-полимеразы и ДНК-лигаза, белковые факторы, обеспечивающие биосинтез ДНК. Репликативная вилка и ее работа. РНК-зависимая ДНК-полимераза (ревертаза). Этапы биосинтеза ДНК: инициация, элонгация, терминация. Биосинтез ДНК на РНК в качестве матрицы. Репликация кольцевых форм ДНК.
Регуляция биосинтеза ДНК в клетке. Природа спонтанного и искусственного мутагенеза. Роль ДНК в передаче наследственной информации.
Биосинтез РНК. Строение, свойства и механизм действия РНК-полимеразы. Процессинг. Локализация биосинтеза РНК в клетке.