Учебно-методический комплекс по дисциплине «Анализ данных и прогнозирование экономики» для студентов специальностей: «Экономика» Астана 2010
Вид материала | Учебно-методический комплекс |
СодержаниеОбщие принципы проверки статистических гипотез Число степеней свободы 4.3 Понятие гипотезы в педагогике Непараметрические критерии статистики |
- Учебно-методический комплекс по дисциплине: «анализ проектов» для студентов специальностей, 2311.99kb.
- Учебно-методический комплекс для студентов по дисциплине «оценка бизнеса и инноваций», 4385.11kb.
- Учебно-методический комплекс дисциплины: Прогнозирование национальной экономики Специальность, 345.29kb.
- Учебно-методический комплекс по дисциплине «Экономика и управление в акционерных обществах», 610.54kb.
- Учебно-методический комплекс по дисциплине «Инвестиционная деятельность предприятия», 593.61kb.
- Учебно-методический комплекс по дисциплине «финансы» астана, 2010, 1311.57kb.
- Учебно-методический комплекс по дисциплине «Институциональная экономика» Для специальности:, 1370.37kb.
- Учебно-методический комплекс по дисциплине теневая экономика уфа 2007, 2230.46kb.
- Учебно-методический комплекс по дисциплине «Управление рисками» Для специальности:, 1692.15kb.
- Учебно-методический комплекс по дисциплине «Экономика недвижимости» Астана 2010, 1852.8kb.
Общие принципы проверки статистических гипотез
Процедура проверки нулевой гипотезы в общем случае включает следующие этапы:
1. задается допустимая вероятность ошибки первого рода (Ркр=0,05)
2. выбирается статистика критерия (Т)
3. ищется область допустимых значений
4. по исходным данным вычисляется значение статистики Т
5. если Т (статистика критерия) принадлежит области принятия нулевой гипотезы, то нулевая гипотеза принимается (корректнее говоря, делается заключение, что исходные данные не противоречат нулевой гипотезе), а в противном случае нулевая гипотеза отвергается и принимается альтернативная гипотеза.1[1] Это основной принцип проверки всех статистических гипотез.
Обычно первые три этапа выполняют профессиональные математики, а последние два – пользователи для своих частных данных.
В современных статистических пакетах на ЭВМ используются не стандартные уровни значимости, а уровни, подсчитываемые непосредственно в процессе работы с соответствующим статистическим методом. Эти уровни, обозначенные буквой P, могут иметь различное числовое выражение в интервале от 0 до 1, например, 0,7 0,23 0,012. Понятно, что в первых двух случаях полученные уровни значимости слишком велики и говорить о том, что результат значим нельзя. В последнем случае результаты значимы на уровне 12 тысячных. Это достоверный результат.
При проверке статистических гипотез с помощью статистических пакетов, программа выводит на экран вычисленное значение уровня значимости Р и подсказку о возможности принятия или неприятия нулевой гипотезы.
Если вычисленное значение Р превосходит выбранный уровень Ркр,
то принимается нулевая гипотеза, а в противном случае — альтернативная гипотеза. Чем меньше вычисленное значение Р, тем более исходные данные противоречат нулевой гипотезе.
Число степеней свободы у какого-либо параметра определяют как число опытов, по которым рассчитан данный параметр, минус количество одинаковых значений, найденных по этим опытам независимо друг от друга.
Величина Ф называется мощностью критерия и представляет собой вероятность отклонения неверной нулевой гипотезы, то есть вероятность правильного решения. Мощность критерия – вероятность попадания критерия в критическую область при условии, что справедлива альтернативная гипотеза. Чем больше Ф, тем вероятность ошибки 2-го рода меньше.
4.3 Понятие гипотезы в педагогике
Гипотеза исследования – методологическая характеристика исследования, научное предположение, выдвигаемой для объяснения какого-либо явления и требующее проверки на опыте для того, чтобы стать достоверным научным знанием. От простого предположения гипотеза отличается рядом признаков. К ним относят:
- соответствие фактам, на основе которых и для обоснования которых она создана
- проверяемость
- приложимость к возможно более широкому кругу явлений
- относительная простота.
В гипотезе органически сливаются два момента: выдвижение некоторого положения и последующее логическое и практическое доказательство.2[2]
Педагогическая гипотеза (научное предположение о преимуществе того или иного метода) в процессе статистического анализа переводится на язык статистической науки и заново формулируется, по меньшей мере, в виде двух статистических гипотез.
Возможны два типа гипотез:[4] первый тип — описательные гипотезы, в которых описываются причины и возможные следствия. Второй тип — объяснительные: в них дается объяснение возможным следствиям из определенных причин, а также характеризуются условия, при которых эти следствия обязательно последуют, т. е. объясняется, в силу каких факторов и условий будет данное следствие. Описательные гипотезы не обладают предвидением, а объяснительные обладают таким свойством. Объяснительные гипотезы выводят исследователей на предположения о существовании определенных закономерных связей между явлениями, факторами и условиями.
Гипотезы в педагогических исследованиях могут предполагать, что одно из средств (или группа их) будет более эффективным, чем другие средства. Здесь гипотетически высказывается предположение о сравнительной эффективности средств, способов, методов, форм обучения.
Более высокий уровень гипотетического предсказания состоит в том, что автор исследования высказывает гипотезу о том, что какая-то система мер будет не только лучше другой, но и из ряда возможных систем она кажется оптимальной с точки зрения определенных критериев. Такая гипотеза нуждается в еще более строгом и оттого более развернутом доказательстве.
Лекция 4
Анализ одной и двух нормальных выборок
Следующей задачей статистического анализа, решаемой после определения основных (выборочных) характеристик и анализа одной выборки, является совместный анализ нескольких выборок. Важнейшим вопросом, возникающем при анализе двух выборок, является вопрос о наличии различий между выборками. Обычно для этого проводят проверку статистических гипотез о принадлежности обеих выборок одной генеральной совокупности или о равенстве средних.
Если вид распределения или функция распределения выборки нам заданы, то в этом случае задача оценки различий двух групп независимых наблюдений может решаться с использованием параметрических критериев статистики: либо критерия Стьюдента (t), если сравнение выборок ведется по средним значениям (X и У), либо с использованием критерия Фишера (F), если сравнение выборок ведется по их дисперсиям.
Использование параметрических критериев статистики без предварительной проверки вида распределения может привести к определенным ошибкам в ходе проверки рабочей гипотезы.
Для преодоления указанных трудностей в практике педагогических исследований следует использовать непараметрические критерии статистики, такие, как критерий знаков, двухвыборочный критерий Вилкоксона, критерий Ван дер Вардена, критерий Спирмена, выбор которых, хотя и не требует большого числа членов выборки и знаний, вида распределения, но все же зависит от целого ряда условий.
Непараметрические критерии статистики - свободны от допущения о законе распределения выборок и базируются на предположении о независимости наблюдений.