Ю. А. Александров Данилова Н. Н. Д 18 Психофизиология: Учебник
Вид материала | Учебник |
- А. А. Данилова и др. Учебник: А. А. Данилова, Л. Г. Косулиной «История России с древности, 44.49kb.
- Ключевые проблемы психологии и психофизиология. Определение психофизиологии, 1065.96kb.
- 1. Предмет, методы и задачи психофизиологии. Сравнительная психофизиология 7 Тема Методы, 338.37kb.
- О. В. Дифференциальная психофизиология: Программа, 159.3kb.
- Рабочая программа по дисциплине «психофизиология» Специальность, 292.28kb.
- Александров Д. Н. Личность и синдром предпринимателя, 72.06kb.
- Александров А. А, 49.6kb.
- Литература о Ломоносове М. В. в фондах библиотеки БашГУ, 55.77kb.
- Разработка урока истории по теме "Крымская война", 8 класс, 215.84kb.
- Блохин Геннадий Иванович, Александров Владимир Александрович. М. КолосС, 2006. 512, 557.07kb.
/"——————————N
эд
\__________/
/•————\
^


л | ^ | |
а | | ; |
Я | | |
п" | | |
0. | ,—^и | : |
| |

§ и 1 § § 2
'1 1 §& 5 §/<
3 ° -' _ &• С г'?-
С с: :2 5 ^ ^ ^
°е| ^2
[": за 3 :^- ч- °'
о о § 3 У 5 ^
_ Р о. ? -
^ и 2 § 9
Р11-11
-V . ^ - г-1 О ^
.—- га я та и I- и и о. " 0-3 я я ^ °- з I
ё & ^ а я а х
" И ^ •©• и И 2
^ ^ § и ^ 1 ^§1 ^
1^^|йо
2 н >. X - о г-5, " к " - ё С 2>я и 3 " и -
-Г •"• и I—. '•4 •*• О З О ,- 0 В " С
зЦ^"!^ а^§-^|§
я " 5 гч с; С о
^й и11^^
^ ^ •л- ^ —V Г—
-ь -*•—•_ с- 3 1-'
I5 |Е"^^
1 5 1 § ^ й з ^ °| 1 ^ ё
^§|^1а1
^ -а 5 ^ " У &
. С О. О к ^- ь;
та о " " о о „ о а с " ё м а 3 3 /": 5 ^ 9 ч
3 о ^ а ^ § ^ р ^ к о 3 о. 2 Е:: и 3 ^ & " >-д °- и ° ^ с-
^§ й^ ^ " § ^ 5^ 3 Э а § <и о - ч . х р
&:-Ёй1?й |11^з^
Е & О ° с? _ Д
§.^ § ^ § 1^
^ " ; 1 3 ^ 1
^11^^
§ @ ^ " с! и "
;^ о о а
к - ^ ? ё ё 'з
с я о § а
К = С; § и и —
?-• ~ - и С. В О
а И И и и 3:
ё.§'11 ^ ^ &а и §.з =г ^
_ _ и и в- ь" п
§ 5 Ю С 3 О Е-
а е о о м _ а
а Я ^ " Я И
II 11 1
^; ^ I § 5 §^ ^ ^ 2 ^Й 5 §
^ 1§ ^ ^
^ &!^ё &
частотой сразу после того, как из периферического поля зрения экивотного исчезала цель (квадрат), имеющая для него особую значимость (рис- 25). Такой нейрон пребывал в активном состоянии только в течение всего периода отсрочки — в интервале от момента исчезновения цели до начала перевода глаз на место, где ранее был виден квадрат. В зависимости от места целевого стимула на экране во время отсрочки активируются разные нейроны. Нейроны, сохраняющие информацию о пространственном положении цели, получили название нейронов памяти. Их совокупность образует ядро системы пространственной рабочей памяти- Если в период отсрочки работа нейрона памяти нарушалась, это вело к появлению ошибочной глазодвигательной реакции. Кроме рассмотренных нейронов, была выделена группа клеток, которая пространственно-селективно реагировала на появление и исчезновение целевого стимула. Третья группа нейронов возбуждалась перед началом и во время саккады. Они представляют класс командных нейронов префронтальной коры, управляющих движением глаз через переднее двухолмие. Их реакция прерывает активность нейронов памяти, сохраняющих информацию о месте целевого стимула во время задержки.
Нейроны памяти префронтальной коры пространственно селективны. Разная локализация объекта, место которого нужно помнить во время задержки, активирует различные группы нейронов. Нейроны памяти префронтальной коры организованы в колонки. Каждая колонка специализируется на запоминании определенного участка зрительного поля, если там появился значимый объект. П. Голдман-Ракич (Оо1с1тап-Как1с Р., 1996) обращает внимание на большое сходство модульной организации префронтальной коры, обрабатывающей зрительно-пространственную информацию, и первичной зрительной коры, где выявлены нейроны со специфической чувствительностью к различной ориентации стимула- Колонки префронтальной коры с разной пространственной ориентацией обнаруживают оппонентные отношения:
возбужденная колонка одного типа тормозит активность колонок других типов через систему тормозных интернейронов.
Опыты показывают, что обезьяна может удерживать в рабочей памяти не только информацию о месте нахождения объекта, но и образ самого объекта. В эксперименте, который получил название «зрительный поиск», обезьяне дают возможность рассматривать несколько фигур, одновременно демонстрируемых на экране. При этом экспериментатор подкрепляет соком те саккады, которые переводят взор на одну из фигур (например, квадрат). В результате тренировки животное научается выбирать из нескольких фигур ту,
117
которая поощряется, фиксируя ее взглядом. Из этого следует, что образ целевого объекта находится в активной форме и используется в поведении для получения пищи.
У человека рабочая память может быть исследована с помощью вызванных потенциалов. Операция опознания стимула требует актуализации образа стимула и его сравнения с тем, что воспринимается. В префронтальной коре человека Р. Наатанен (N031^011 К.) выявил процессную негативность (ПН), которая возникает на релевантный стимул (ее получают процедурой вычитания: ВП на релевантный стимул минус ВП на индифферентный стимул). ПН рассматривается как показатель опознания целевого стимула. Эти данные подтверждают причастность префронтальной коры к операции считывания нужной информации из места постоянного хранения и ее сравнения с действующим стимулом.
Рассматривая химическую архитектуру префронтальной коры, П. Голдман-Ракич (Оо1с1тап-Как1с Р., 1996) приходит к заключению, что главный модулятор префронтальной коры — ДА-ер-гическая система. ДА-модуляция нейронов РП осуществляется через особый тип дофаминовых рецепторов — 01 К, локализованных на дистантных дендритах и шипиках пирамидных нейронов и на интернейронах префронтальной коры. Характерное для шизофрении нарушение РП сочетается с уменьшением в префронтальной коре плотности рецепторов 01 К. Существует оптимальный уровень ДА-модуляции для успешной когнитивной деятельности. Большее и меньшее содержание ДА относительно оптимального значения ухудшает рабочую память. Флуктуациями высвобождения ДА и его захвата ДА-ергическими рецепторами можно объяснять флуктуации когнитивной деятельности.
Актуализация различного рода информации в режиме РП предполагает участие разных отделов префронтальной коры. Непространственная зрительная РП (на лица, объекты) использует нижнюю часть префронтальной коры. Пространственная зрительная рабочая память, используемая при игре в шахматы, во время ориентирования по карте, запоминания места, где находится объект, ландшафта, картин, а также при удержании в памяти местоположения целевого стимула в опытах с временной задержкой у человека и обезьяны, обеспечивается дорзолатеральной префронтальной корой.
Методом ПЭТ показано, что задание на ориентацию по карте вызывало большее увеличение локального мозгового кровотока в медиодорзолатеральной фронтальной коре и головке хвостатого ядра (ХЯ) левого полушария по сравнению с контрольным заданием, когда использовали идентичные стимулы и моторные реакции, но без необходимости удерживать текущую информацию в 118
яамяти. Трудное задание на планирование от легкого отличалось лишь большей активностью, но только в головке ХЯ и таламусе. Параллельная активация префронтальной коры и базальных ганглиев (хвостатого ядра) во время выполнения задания на ориентацию позволяет предполагать, что в РП воспроизводятся не только репрезентации самих объектов, их местонахождение, но и моторные акты, которые должны быть оперативно реализованы в поведении. Семантическое кодирование и воспроизведение, также как И другие вербальные процессы, связаны с активацией инсулярной и/или передней префронтальной области.
В онтогенезе префронтальная кора у человека созревает к 8 мес. Дети, не достигшие этого возраста, ведут себя так же, как и обезьяны с поврежденной префронтальной корой. Они вырабатывают условнорефлекторную реакцию, не обращая внимания на изменение места пищевого подкрепления. Способность к выполнению теста с отсроченным ответом у детенышей обезьян возникает в возрасте 2—4 мес. В этот период в префронтальной коре интенсивно образуются новые синаптические контакты.
Префронтальная кора тесно взаимодействует с основным хранилищем информации. По результатам исследований с применением ПЭТ энграммы памяти находятся рядом с сенсорными системами. Воспоминание об определенных событиях активирует те же зоны экстрастриарной коры (височной и теменной), которые ответственны за восприятие объектов, однако при этом увеличение метаболической активности охватывает более широкую зону. Информация о событиях и объектах хранится в блоках в непосредственной близости с параллельно работающими системами «Что» и «Где».
В процессе программирования поведения и двигательных актов информация, хранящаяся в теменной и нижневисочной коре, считывается на нейроны префронтальной коры через их прямые связи.
Следы памяти системы «Где» переписываются на нейроны префронтальной коры в виде константного пространства париетальной коры. На это указывают пространственно-селективные характеристики всех трех групп нейронов префронтальной коры. Их реакция избирательно зависит от локализации стимула и саккады во внешнем пространстве. Следы памяти системы «Что», локализованной в нижневисочной коре и реагирующей на сложные изображения (гностические единицы), также переписываются на пре-фронтальную кору. Нейроны нижневисочной коры характеризуются константностью в отношении комплексов признаков и поэтому узнают, например, лицо в разных ракурсах.
Косвенное подтверждение обмена информацией между теменной и префронтальной корой содержится в результатах опытов,
119
полученных А.С. Батуевым на обезьянах, у которых вырабатывались пищевые инструментальные отсроченные двигательные реакции. Исследователь обнаружил одновременную активацию «нейронов памяти» в лобной и теменной коре. Они реагировали, изменяя частоту или паттерн активности, только в период отсрочки (от 5 до 20 с) между условным сигналом (вспышкой света) и двигательной реакцией — нажимом на рычаг, который открывал кормушку с пищей. У обезьяны вырабатывались дифференцировка условных сигналов по месту вспышки света (слева ~ справа) и правильный выбор рычага для нажима.
Между префронтальной корой и височно-теменными областями неокортекса существуют не только прямые, но и обратные связи. Наличие обратных связей из префронтальной коры в теменную и нижневисочную подтверждается появлением в них ответов на электрическую стимуляцию префронтальной коры.
Совместная активация префронтальной и теменной коры показана с помощью авторадиографического метода (с введением 2-дезоксиглюкозы). После выполнения теста на запоминание места нахождения фигуры и выполнения отсроченного ответа у обученной обезьяны уровень метаболической активности в префронтальной коре и структурах, с которыми она связана, — гиппокампе, нижней части теменной коры и таламусе — увеличен. При выполнении обычного инструментального рефлекса без необходимости в течение некоторого времени удерживать в памяти целевой стимул метаболическая активность этих структур заметно слабее.
Только наличием обратных связей от префронтальной коры к теменной и височной можно объяснить результаты опытов со «зрительным поиском», когда обезьяна научается выделять с помощью глазодвигательной реакции (саккады) определенную фигуру на экране. Это означает, что образ целевого стимула в результате тренировки животного приобретает более четкие очертания, т.е. происходит подчеркивание, усиление признаков стимула. Это возможно только в том случае, если нейроны памяти префронтальной коры в зависимости от результатов подкрепления корректируют следы памяти в височной и теменной коре. Перезапись информации через обратные связи из префронтальной коры автоматически функционирует постоянно, обеспечивая приобретение и непрерывную коррекцию наших знаний.
Существование обратных связей от префронтальной коры к основным хранилищам памяти позволяет по-новому взглянуть на механизм ретроградной амнезии. Амнестические агенты действуют на актуализированные энграммы, когда они используются в режиме рабочей памяти. Это касается как старых следов, активиро-120
ванных для оперативного использования, так и новых, только что приобретенных- В результате нарушения работы нейронов памяти префронтальной коры вносится искажение в содержание информации, которая перезаписывается через обратные связи для длительного хранения, что приводит к избирательной потере той памяти, которая предварительно была активирована.
Один из вопросов, который продолжает волновать психологов и психофизиологов, — почему мы, как правило, не помним или очень быстро забываем свои сновидения? Частичный ответ на этот вопрос дают недавние исследования метаболической активности структур мозга методом ПЭТ в цикле бодрствование—сон. Во время парадоксального сна выявлена сильная инактивация префронтальной (дорзолатеральной и орбитальной) коры — структуры, ответственной за рабочую память. Одновременно мощная активация охватывает лимбическую систему (особенно миндалину) и часть ассоциативной зрительной и слуховой коры. Во время парадоксального сна параллельно инактивации префронтальной коры отмечена редукция высвобождения норадреналина и серотонина (из синего пятна и ядер шва) — медиаторов, ответственных за обучение на отрицательном и положительном подкреплении (НоЬкоп -Т.Е., 5пс1сеоШ К., Расе-ЙспоН Е.Р., 1998). Новые комбинации образов, которыми так насыщены сновидения, вследствие блокады норадренергической и серотонинергической систем не получают подкрепления и из-за инактивации механизма рабочей памяти не переписываются на место постоянного хранения.
6.2.^ МНОЖЕСТВЕННОСТЬ СИСТЕМ ПАМЯТИ
Современные исследования мозга, выполненные методом ПЭТ и функциональной МРТ, свидетельствуют, что актуализация следов памяти требует одновременной активации многих структур мозга, каждая из которых выполняет специфическую функцию по отношению к процессам памяти. Процессы памяти связывают с фронтальной, височной и париетальной корой, мозжечком, ба-зальными ганглиями, миндалиной, гиппокампом, неспецифической системой мозга.
Процесс формирования следа памяти характеризуется перемещением локусов активности по структурам мозга.^ Вновь формируемая энграмма в отличие от старого следа памяти представлена в мозге более широкой зоной активации.
Актуализация следа памяти предполагает обязательное появление активации в префронтальной коре, которая в режиме рабочей памяти обеспечивает считывание информации из основного
121
хранилища памяти — височной и теменной коры — и интеграцию ее на нейронах префронтальной коры. На пространственную локализацию активации влияет специфика информации, содержащейся в энграмме, которая выбирается в соответствии с решаемой задачей в системе целенаправленного поведения.
Высказана гипотеза о том, что след памяти через разное время после обучения реализуется разными по своему составу нейронными ансамблями (Греченко Т.Н., 1997). Как показало изучение динамики ассоциативного обучения у изолированных нейронов, более чем у 80% нейронов наблюдается отсроченное обучение. Эффект обучения проявляется через 5—40 мин после завершения процедуры обучения. Непосредственное или отсроченное обучение каждого нейрона привязано к определенному моменту времени и является устойчивой индивидуальной характеристикой нейрона при конкретном типе обучения. «Плавание» энграммы по структурам мозга (нейронным ансамблям) рассматривается как принцип организации памяти.
6.2.1. Мозжечок и процедурная память
Мозжечок относится к многофункциональным структурам мозга. Среди его функций — сохранение равновесия, поддержание позы, регуляция и перераспределение мышечного тонуса, тонкая координация произвольных движений. В последние годы выявлена его способность одновременно с корой формировать все виды классических условных рефлексов. Благодаря связям клеток Пуркинье мозжечка со всеми сенсорными системами через мшистые, а затем через параллельные волокна, а также с нижней оливой, откуда поступают сигналы о всех совершаемых безусловных рефлексах, клетки Пуркинье представляют уникальную основу для конвергенции условного и безусловного сигналов.
^ Зачем в мозжечке параллельно неокортексу формируются условные рефлексы? Какую новую функцию по сравнению с корой берет на себя мозжечок? Предполагают, что мозжечок контролирует точность выполнения движений во времени, так как только мозжечок обладает способностью в любой момент времени заблокировать любую двигательную реакцию или, наоборот, дать ей возможность реализоваться. При поражении мозжечка клиницисты описывают явление дисметрии— плохое выполнение точных движений,
Причастность мозжечка к выработке классических условных рефлексов доказывается опытами с отключением холодом и разрушением его структур. Временное охлаждение моторных нейронов во время обучения блокирует выполнение условного и безус -
122
ловного рефлексов, но не нарушает сам процесс обучения. С восстановлением функций моторных нейронов можно обнаружить, что процедура обучения в этих условиях завершилась выработкой условного рефлекса, т.е. для процесса обучения исполнение условной и безусловной реакций необязательно. Если же во время выработки условного рефлекса холодом отключить кору и ядра мозжечка, обучение будет невозможным. Частичным разрушением ядер моста, откуда берут начало мшистые волокна, несущие афферентную информацию к клеткам Пуркинье, можно вызвать выпадение условных рефлексов на специфическую модальность. Замена условного сигнала электрической стимуляцией ядер моста приводит к более быстрому формированию условного рефлекса. Разрушение нижней оливы препятствует формированию условных рефлексов в мозжечке. Новые доказательства роли мозжечка в выработке классического условного рефлекса получены на мышах-мутантах, у которых через 2—4 недели после рождения происходит полная дегенерация коры мозжечка. Такие мыши способны лишь к частичному имплицитному обучению за счет ядерных структур мозжечка.
Значительный прогресс в изучении нейронных взаимодействий в мозжечке при выработке классических условных рефлексов был достигнут в работах Рихарда Томпсона и его коллег, доказавших, что условный мигательный рефлекс формируется не только в коре, но параллельно и в локальной зоне мозжечка. В качестве условного сигнала они использовали световой или звуковой раздражитель, а безусловным рефлексом служило мигание на обдувание воздухом роговицы кролика.
Основными клеточными элементами коры мозжечка являются клетки Пуркинье. Их дендриты восходят к поверхностным слоям, а аксоны идут к нейронам ядер мозжечка (рис. 26). Кроме клеток Пуркинье, в коре мозжечка имеются зернистые (или клетки-зерна) и корзинчатые клетки. Афферентная информация поступает в мозжечок к зернистым клеткам от мшистых волокон (аксонов нейронов моста). Клетки-зерна посылают параллельные волокна к ден-дритам каждой клетки Пуркинье, образуя на них множество синапсов. Параллельно клетки-зерна образуют синапсы и на корзин-чатых клетках (интернейронах), оканчивающихся тормозными синапсами на соме клетки Пуркинье. Активация клеток Пуркинье создает торможение у нейронов ядер мозжечка посредством ГАМК-тормозного медиатора и как следствие — торможение нейронов красного ядра, управляющих двигательными рефлексами. На дендриты клеток Пуркинье конвергируют не только параллельные волокна зернистых клеток, но и лазящие (или ползующие} волок-
123

Рис. 26. Схема нейронной сети в мозжечке, обеспечивающей функционирование условного мигательного рефлекса.
на — аксоны нейронов нижней оливы. Имеется около 15 млн клеток Пуркинье. Каждая из них имеет возбуждающие синаптические контакты только с одним лазящим волокном и