Структурно-кинетические закономерности и механизм термораспада полифункциональных нитро- и азидосоединений 02. 00. 04 физическая химия

Вид материалаЗакон

Содержание


Таблица 4.2 Кинетические и термодинамические параметры термораспада нитраминов XXVI
4.3 Каркасные нитрамины
Подобный материал:
1   2   3   4   5   6   7   8   9

Таблица 4.2

Кинетические и термодинамические параметры термораспада нитраминов XXVI


Шифр

Формула

соединения

Условия

распада

T, С

Еa,

кДж/моль

lgA

k200C,

с-1

S200C,

__Дж_

мольК

d, Å

XXVI.1



газ. фаза

р-р в ДБФ

р-р в ДНБ

200-230

185-220

185-225

168,7

174,6

173,9

13,95

14,46

14,40

2,1·10-5

1,5·10-5

1,6·10-5

10,0

19,8

18,6




XXVI.2



р-р в ДБФ

р-р в ДНБ

175-210

180-220

163,9

162,3

14,38

14,29

1,9·10-4

2,3·10-4

18,2

16,5




XXVI.3



р-р в ДБФ

расплав

170-210

180-220

169,2

171,2

14,71

14,93

1,1·10-4

1,1·10-4

24,5

28,7




XXVI.4



р-р в ДНБ а

расплав а

р-р в ТНБ б

расплав

225-245

216-250

230-245

180-220

155,3

198,4

191,7

177,1

12,00

17,30

15,70

14,86

7,0·10-6

2,5·10-5

3,0·10-6

2,0·10-5

-27,4

74,2

43,5

27,4

1,37

XXVI.5



р-р в ДБФ

р-р в ДНБ

твердая фаза

150-185

150-180

150-180

148,7

153,2

172,9

13,38

13,91

15,64

9,1·10-4

9,9·10-4

3,5·10-4

-0,9

9,2

42,4

1,375

XXVI.6



р-р в ДБФ

р-р в ДНБ

145-170

150-175

157,9

160,4

14,47

14,78

1,1·10-3

1,2·10-3

19,9

25,9

1,408

XXVI.7



р-р в НБ

р-р в ДБС

50-70

50-75

123,1

128,8

16,25

16,87

4,55·102

4,45·102

54,0

65,9

1,494

XXVI.8



р-р в ДНБ в

р-р в ДБФ

расплав

160-200

170-210

205-224

166,3

167,5

176,3

14,30

14,62

15,95

8,7·10-5

1,3·10-4

3,0·10-4

16,7

22,8

48,3

1,398

XXVI.9



р-р в ДБС

р-р в ДНБ

160-180

160-180

149,3

150,6

14,53

14,74

1,1·10-2

1,3·10-2

21,1

25,1

1,434

10



р-р в EtOH г

расплав б

200-300

240-260

167,4

175,4

14,60

15,40

1,3·10-4

1,1·10-4

22,4

37,8

1,388

XXIII.1



р-р в ДБФ

расплав

195-215

180-200

174,6

176,8

14,75

15,09

3,0·10-5

3,7·10-5

25,3

31,8




EtOH-этанол; а[Корсунский Б.Л. и др, 1979], б[Лурье Б. А. и др., 1979], в[Максимов Ю.Я. и др., 1967], г[Oxley J.C. и др., 1994]

В ИК-спектрах продуктов термораспада соединения XXVI.2 в расплаве с увеличением глубины превращения уменьшается интенсивность полосы поглощения азидной группы (2130 см-1) при практически неизменной интенсивности полос N-NO2 группы (1555,1295см-1). При глубине превращения 1-3 % были обнаружены лишь молекулярный азот и 5-нитро-5-аза-1,3-диокса-2-метилениминциклогексан, NO2 появляется на более поздних глубинах превращения. Все это свидетельствует о том, что распад соединения XXVI.2 начинается с разрыва связи N–N в азидогруппе.

Из табл. 4.2 видно, что динитрометильная группа в цикле (соединение XXIII.1) по стабильности близка к нитраминной группе (соединение XXVI.1). При переходе от соединения XXVI.10 к соединению XXVI.8 скорость распада изменяется незначительно, а для соединения XXVI.6 скорость на порядок больше, что можно связать со стерическим влиянием динитрометильной группы на одну из нитраминных групп [Oyumi Y. и др., 1985]. Аналогичное влияние наблюдалось нами при замене одной метильной группы в диметил-N-нитрамине на 2,2-динитропропильную группу (см. табл. 3.6). Таким образом, можно констатировать, что термораспад соединения XXVI.6, так же как и RDX, протекает с первичным гомолитическим разрывом связи N-NO2.

Результаты анализа не конденсирующихся в обычных условиях газообразных продуктов термораспада соединения XXVI.5 при разных температурах показывают, что основным компонентом является N2O, а NO отсутствует. Отношение N2/N2O примерно на два порядка меньше, чем у соединения XXVI.3 и RDX. Учитывая это, можно считать, что термораспад соединения XXVI.5 лимитируется гомолизом N-NO2 связи. Образовавшийся NO2 быстро окисляет промежуточные продукты распада и исходный нитрамин, генерируя конечные продукты и воду. Появившаяся вода включает автокатализ термораспада соединениями с аминными группами. Нельзя полностью исключать также автокатализ аминными группами с самого начала термораспада, поскольку кристаллы нитрамина могут содержать влагу, захваченную при кристаллизации. Аналогичный сценарий автокатализа, возможно, реализуется и в растворе. Опыты по распаду нитрамина XXVI.5 подтверждают это предположение. Так, добавление 3-6 % воды (от массы растворителя ДБФ и ДНБ) в 1 % (масс.) раствор увеличивает скорость распада.

Основными продуктами распада соединения XXVI.9 являются CH2O, N2O и CO2, а содержание NO2, NO и CO незначительно [Bulusu S. и др., 1996 (кинетические параметры не определялись)]. Это позволило предположить протекание лимитирующей реакции между нитрамидной и карбонильной группами через четырехчленное циклическое переходное состояние. Однако если принять во внимание активационные параметры, то в сочетании с составом продуктов распада можно ожидать гомолиз по связи N-NO2.

Соединения XXVI.3, XXVI.8 и XXVI.10 имеют в растворе практически одну и ту же скорость распада, несмотря на, казалось бы, их разное химическое строение. Ранее в литературе отмечалось, что скорость распада нитраминов, в основном, зависит от конформации нитраминной группы.

В кристалле наиболее устойчивой -конформации RDX три нитрогруппы пространственно неэквивалентны: две их них находятся в аксиальном положении, а третья - в экваториальном [Choi C.S. и др., 1972]. Такая неэквивалентность, обусловленная требованиями плотной упаковки в кристалле, ведет к заметному различию в длине, а следовательно, и прочности N-NO2 связей. Длина наименее прочной связи N-NO2 1,398 Å, сумма валентных углов (СВУ) у аминного азота 347.9. По данным [Шишков И.Ф. и др., 1991], в газовой фазе все нитраминные фрагменты в молекуле RDX эквивалентны, и их геометрия близка к планарной (СВУ у аминного атома азота 356.3). Длина связей N-NO2 возрастает до 1,413 Å. В растворе реализуется промежуточная ситуация между сильным влиянием межмолекулярного взаимодействия в кристаллическом состоянии и его отсутствием в газовой фазе. Судя по величине дипольных моментов RDX и соединения XXVI.3 в растворе должна наблюдаться эквивалентность нитраминных групп. Что же касается конформации аминного азота, то, по-видимому, он в большей степени пирамидален, чем в газовой фазе. Такой вывод следует из сравнения скоростей термораспада RDX, нитраминов XXVI.3, XXVI.10 и XXVI.4. Длины связей N-NO2 1,37 Å в соединении XXVI.4 короче, чем в RDX и у других рассматриваемых нами нитраминах, а его конформация кресло на 16 кДж выгоднее ванны [Потапов В.М., 1976], и это определяет его более высокую термическую стабильность.

Соединение XXVI.9 содержит уплощенный сопряженный фрагмент динитромочевины и имеет общую конформацию полукресло (полуванна) [Anderson J. L. и др., 1990]. Длины всех связей N-NO2 (наибольшее значение 1,434 Å) больше, чем в RDX, что, в принципе, объясняет меньшую его термическую стабильность по сравнению с RDX.

В отличие от соединения XXVI.4 в нитрамине XXVI.10 [Pickering и др., 1991] одна из нитраминных групп, практически, планарна (сумма валентных углов у аминного атома азота 356.5) и длина связи N-NO2 составляет 1,345 Å. Другая нитраминная группа пирамидальная, где сумма валентных углов у атома азота 344.4, а длина N-NO2 связи, равная 1,388 Å, больше, чем в соединении XXVII.4. Это находит свое отражение в большей величине скорости термораспада нитрамина XXVI.10 (табл. 4.2).

Скорость распада соединения XXVI.5 в растворе близка к таковой для соединения XXVI.6. В кристалле соединения XXVI.5 реализуется конформация кресло-кресло [Choi C.S. и др., 1974]. Угол между плоскостями нитрогрупп и CNC цикла составляет, соответственно, 34.0 и 26.0, как и у RDX. Углы CNC в шестичленных циклах равны 113.0-118, т.е. близки к таковым в RDX, но меньше, чем в молекуле 1,3,5,7-тетранитро-1,3,5,7-тетраазациклооктана (НМХ). Конформация соединения XXVI.5 более жесткая, чем структура RDX и HMX, т.е. конверсия циклов затруднена. Длина наибольшей N-NO2 связи в нитрамине XXVI.5 равна 1,375Å.

Соединения XXVI.2 и XXVI.6 содержат два потенциальных реакционных центра. Если для соединения XXVI.2 отсутствуют сведения о его конформации, то согласно рентгеноструктурным данным в соединении XXVI.6 нитраминные группы неэквивалентны [Oyumi и др., 1985]. Длина наименее прочной связи N-NO2 составляет 1,408 Å, а сумма валентных углов у аминного атома азота равна 349.7.

Для соединения XXVI.7 самая большая скорость распада обусловлена жестко-напряженной конформацией шестичленного цикла и строением нитраминной группы. Шесть атомов азота в бицикле за счет растяжения и сжатия химических связей, а также изменения валентных углов вносят существенный вклад в увеличение конформационной энергии молекулы. Это соединение имеет рекордное значение длины 1,494 Å одной из N-NO2 связей [Gao A. и сотр., 1991] (нитраминная группа, в которой пирамидальный аминный азот непосредственно связан с одним из атомов азота тетразольного цикла). При этом сумма валентных углов аминного азота составляет 329.0, что также является наименьшим значением по сравнению с рассмотренными выше нитраминами.

Резюмируя вышеизложенное, можно считать, что скорость гомолиза по связи N-NO2, в основном, зависит от конформации цикла, которая отражается на длине наименее прочной связи. Нами обнаружена корреляционная зависимость, описываемая уравнением регрессии

lg k200C = (62,894±2,912)dN-NO2 – (91,576±4,111) (62),


r=0,992; Sy=0,627; n=6

где dN-NO2 – длина наименее прочной N-NO2 связи.

Из зависимости (62) выпадает точка для соединения XXVI.5. Вероятно, это связано с тем, что его термораспад наряду с гомолизом связи N-NO2 включает автокатализ.

В ряду нитраминов (для которых имеются рентгеноструктурные данные) наблюдается тенденция уменьшения энергии активации и увеличения предэкспоненциального множителя с увеличением длины наименее прочной N-NO2 связи:

Ea = -391,73dN-NO2 + 711,58 r=0,996; n=6 (63)

lgA = 20,79dN-NO2 - 14,68 r=0,949; n=7 (64)

Таким образом, сочетание вторичных нитраминных групп с оксо-, гем-динитро- и тетразольной группами в шестичленном гетероцикле не изменяет лимитирующей стадии термораспада – гомолиза N-NO2 связи, но может приводить к увеличению скорости распада на 2-7 порядков. При наличии азидной, аминной и карбонильной функций возможна смена лимитирующей стадии термораспада.


4.3 Каркасные нитрамины

Кинетические закономерности термического разложения изучены только для гексанитроизовюрцитана (HNIW, CL-20) [Oxley J.С., 1994; Lobbecke S., 1999; Корсунский Б.Л. и др., 1999]. Нами исследовано влияние структуры и агрегатного состояния нитраминов XXVII.1-5 на скорость и механизм термораспада:



Изучение кинетических закономерностей, влияние m/V, S/V и концентрации вещества в растворе на скорость термораспада соединений XXVII показало, что они аналогичны таковым для нитраминов XXV и XXVI.

Кинетические параметры термораспада нитраминов XXVII представлены в табл. 4.3. Анализируя данные табл. 4.3, можно заметить, что энергия активации в растворе, в пределах ошибки ее определения, близка к энергии диссоциации связи N-NO2 и изменяется в относительно узком интервале 154,1-171,7 кДж/моль, зато логарифм предэкспоненциального множителя варьирует в широких пределах 13,49-16,8. Из этого следует, что реакция термораспада каркасных нитраминов в значительной степени контролируется энтропийным фактором. Активационные параметры разложения в твердой фазе больше: Еа=162,2-206,4 кДж/моль, lgA=14,94-19,79. Однако, несмотря на существенный разброс в параметрах, скорость распада нитраминов XXVII.1-XXVII.3, XXVII.4b изменяется незначительно. В целом, основные закономерности по влиянию структуры на скорость распада, найденные для раствора, сохраняются для твердой фазы. В то же время значение lgA13,5, что, по аналогии с нитраминами XXVI, позволяет предположить гомолитический механизм распада с разрывом связи N-NO2 для первичной стадии. Качественный состав газообразных продуктов при 3-5 %-ной конверсии нитраминов XXVII.1, XXVII.3 показал, что независимо от условий распада (раствор, твердая фаза) образуются N2, N2O CO, CO2 и NO, что не противоречит гомолизу N-NO2 связи.

Таблица 4.3