Учебно-методический комплекс по дисциплине «логика»
Вид материала | Учебно-методический комплекс |
- А. Б. Тазаян Учебно-методический комплекс дисциплины "Логика" Ростов-на-Дону 2010 Учебно-методический, 892.49kb.
- А. Б. Тазаян Учебно-методический комплекс дисциплины "Юридическая логика" (для студентов, 1003.39kb.
- Л. Л. Гришан Учебно-методический комплекс по дисциплине «Аудит» Ростов-на-Дону, 2010, 483.53kb.
- Учебно-методический комплекс Для специальности 021100 Юриспруденция Согласовано: Рекомендовано, 629.1kb.
- И. Л. Литвиненко учебно-методический комплекс по дисциплине международный туризм ростов-на-Дону, 398.8kb.
- Учебно-методический комплекс по дисциплине «Юридическая психология специальность «Юриспруденция», 970.99kb.
- Е. М. Левченко учебно-методический комплекс по дисциплине «управленческие решения», 181.01kb.
- О. А. Миронова учебно-методический комплекс по дисциплине «основы таможенного дела», 679.3kb.
- Учебно-методический комплекс издательство тюменского государственного университета,, 1888.27kb.
- Учебно-методический комплекс издательство тюменского государственного университета,, 1890.25kb.
Тема VI. Дедукция. Простой категорический силлогизм
1. Вопросы
1. Общая характеристика дедуктивных умозаключений
2. Простой категорический силлогизм: правила вывода, фигуры и модусы
2. Основные термины
Умозаключение Простой категорический силлогизм
Посылки Правила терминов
Вывод Правила посылок
Субъект Правила фигур
Предикат Фигуры
Средний термин Модусы
Дедукция Силлогизм
3. Опорная информация
В структуре наших знаний и представлений об окружающем мире решающее значение принадлежит логическому знанию. Именно в нем раскрывается активность человеческого мышления. Почти вся культура состоит из выводного знания. Одной из основных логических форм опосредованного мышления является умозаключение.
Умозаключение - логическая форма мышления, в которой из одного или нескольких истинных суждений (посылок) на основании определенных правил с достоверностью или вероятностью получается новое суждение (вывод).
Независимо от содержания всякое умозаключение имеет следующие структурные элементы: посылки и вывод (заключение).
Посылки - исходные суждения, из которых выводится новое суждение; нечто данное, известное, с чего мы начинаем умозаключать.
Вывод (заключение) - выведенное из посылок суждение; переход от посылок к заключению; искомое неизвестное, к которому мы приходим в результате умозаключающей деятельности.
По направлению движения мысли умозаключения бывают дедуктивные, индуктивные и традуктивные.
В дедуктивных умозаключениях мысль идет от большей к меньшей общности знания. Например:
“Ни одно сельскохозяйственное предприятие не может изменить сезонный характер производства.
Мясо-молочная ферма - сельскохозяйственное предприятие.
Следовательно, мясо-молочная ферма не может изменить сезонный характер производства.”
В индуктивных умозаключениях мысль, напротив, идет от меньшей к большей общности знания. Например:
“Земледельческое хозяйство не может изменить сезонный характер производства.
Рыболовецкое хозяйство не может изменить сезонный характер производства.
Звероводческое хозяйство не может изменить сезонный характер производства.
Следовательно, некоторые виды хозяйственной деятельности связаны с сезонным характером производства.”
В традуктивных умозаключениях (по аналогии) мысль сохраняет свое направление на одном уровне, поскольку посылки и выводы имеют одинаковую степень общности. Иными словами, мысль здесь движется от общего к общему или от частного к частному. Например:
“На Земле и на Луне есть горы. На Земле горы произошли в результате деформации земной поверхности. Вероятно, на Луне горы произошли в результате деформации лунной поверхности.”
Получив исходное представление о сущности и разновидностях умозаключения, приступим к более подробному ознакомлению с дедуктивной логикой.
Впервые теория дедукции была обстоятельно разработана Аристотелем. Он выяснил требования, которым должны отвечать отдельные мысли, входящие в состав дедуктивного умозаключения; определил значения терминов и раскрыл правила вывода некоторых видов дедуктивных умозаключений.
Позднее Р.Декарт показал роль дедукции в процессе познания. Он считал, что мышление осуществляется двумя путями: через опыт и через дедукцию. Но опыт часто вводит нас в заблуждение, тогда как дедукция ( по словам Р. Декарта, “чистое умозаключение от одной вещи через другую”) избавлена от этого недостатка. Французский мыслитель предлагал совершенствовать формальную логику с помощью дедуктивно-математического метода.
Эта идея была подхвачена Г. Лейбницем. Он предлагал построить новую логику, базирующуюся на определенной совокупности основных понятий и высказываний, из которых путем соответствующих преобразований можно вывести новое знание. Дедуктивно-математический метод получил свое дальнейшее развитие в теории и практике математической логики (Д. Буль, Г.Фреге, А.Уайтхед, Б. Рассел, Д. Гильберт, В.Аккерман, А.Тарский, В.Лукасевич и другие). В этом направлении успешно работали и наши соотечественники: П.С.Порецкий, И.И.Жегалкин, А.Н.Колмогоров, А.А.Марков, А.И.Мальцев, П.С.Новиков, А.А.Зиновьев, В.Ц.Шестаков и другие.
Что же такое дедуктивная логика? Дедуктивная логика - это такой способ мышления, который позволяет на основе одной общей и одной частной посылок получить частный вывод. В силу категоричности рассуждения дедуктивные умозаключения называют также силлогизмом.
По характеру суждений, которые выполняют роль посылок, и по специфике связи посылок и выводов силлогизмы подразделяют на простые (простой категорический), сложные (полисиллогизм, категорический, условный, условно-категорический, разделительный, разделительно-категорический, условно-разделительный), сокращенные (сорит, энтимема), сложно-сокращенные (эпихейрема).
Для получения системного представления о дедуктивной логике предлагаем следующую схему.
Силлогизмы
Простые
Сложные
Сокращенные
Сложно-
сокращенные
простой ка- - полисиллогизм - сорит
тегоричес- - условный
кий - условно-кате- - энтимема - эпихейрема
горический
- разделительный
- разделительно-
категорический
- условно- разде-
лительный
Простой категорической силлогизм представляет собой дедуктивное умозаключение, в котором из двух категорических суждений-посылок, связанных общим термином, получается новое категорическое суждение - вывод. Например:
Все преступления (S) - уголовные деяния (P)
Кража (S) - преступление (P)
Кража(S) - уголовное деяние (Р).
В данном умозаключении общим термином для двух посылок является слово “преступление”. Оно обозначается латинской буквой М (медиум - посредник). Средний термин входит в каждую посылку, связывает посылки друг с другом, но не входит в заключение.
Посылки и вывод в соответствии со структурой любого суждения имеют субъект и предикат. Чтобы определить, какая из посылок является большей и какая меньшей, надо посмотреть не объемные отношения терминов вывода. В полученном выводе предикат “уголовное деяние” по объему шире, чем “кража”. Соответственно, посылка, в которую входит больший по объему термин вывода, называется большей посылкой. Посылка, в которую входит меньший по объему термин вывода, называется меньшей посылкой. Следовательно, в данном умозаключении первая посылка является большей, а вторая - меньшей.
Формула простого категорического силлогизма выглядит так: S-М-Р, то есть субъект и предикат связаны друг с другом через средний термин. Запомним, что в простом категорическом силлогизме имеются только три термина. Это обстоятельство является существенным для получения правильного вывода.
Наличие среднего термина в посылках означает, что у суждений имеется общая мысль, сходное знание. Без среднего термина между высказанными мыслям нет никакой логической связи и, следовательно, не может быть никакого умозаключения: “На лугу пасутся лошадь и корова. На углу стоит аптека. Никто замуж не берет”.
Для получения правильного вывода в простом категорическом силлогизме необходимо знать правила дедуктивного умозаключения, а также ошибки, которые могут возникать при нарушении правил.
Характер вывода в простом категорическом силлогизме зависит от соблюдения правил терминов, правил посылок и правил фигур.
Правила терминов сводятся к следующему.
1) В каждом силлогизме должно быть только три термина (S, М, Р). Нарушение этого правила ведет к логической ошибке, называемой “учетверением терминов”. Например:
Я - человек
Ты - не Я
?
Напрашивается вывод, что “Ты - не человек”. Однако такого вывода сделать нельзя, и причина кроется в характере среднего термина.
В данном умозаключении средний термин “Я” мыслится не в одном, а в двух значениях: во-первых, как принадлежность к человеческому роду; во-вторых, как принадлежность ко Мне. Это значит, что вместо одного среднего термина их как бы существует два. Ошибка “учетверение терминов” приводит к неправильным и часто парадоксальным выводам.
2) Средний термин должен быть распределен хотя бы в одной из посылок. Если он не распределен в обеих посылках, то вывода сделать нельзя. Например:
Собаки имеют четыре ноги
Кошки имеют четыре ноги
?
Напрашивается вывод, что собаки - это кошки. Но такого вывода сделать нельзя, потому что средний термин “четыре ноги” не распределен в обеих посылках, то есть четыре ноги имеются не только у собак и кошек. Здесь мы имеем дело с тем случаем, о котором Гегель говорил, что вывод может оказаться трупом, оставив впереди себя живое тело.
3) Термин, не распределенный в посылке, остается нераспределенным в выводе.
Все преступники достойны наказания
Некоторые люди - преступники
Некоторые люди достойны наказания.
Правила посылок в простом категорическом силлогизме включают в себя следующие требования.
1) Из двух отрицательных посылок нельзя сделать вывода:
Добро - не зло
Зло - не благодетель
?
2) Если одна из посылок отрицательная, то и вывод отрицательный:
Ни один человек не может жить вне общества
N - человек
N не может жить вне общества.
3) Из двух частных посылок не следует никакого заключения:
Некоторые студенты учатся отлично
Некоторые студенты учатся посредственно
?
4) Если одна из посылок частная, то и заключение должно быть частным:
Малая вероятность - свидетельство редкого
появления факта
Некоторые события - маловероятны
Некоторые события - редкие факты
5) Из двух утвердительных посылок следует утвердительный вывод.
Существуют также правила фигур простого категорического силлогизма. Фигурами называются разновидности силлогизма по положению среднего термина, который может в посылках занимать место субъекта или предиката. От положения среднего термина зависит качественный и количественный характер вывода, а также сама возможность его получения.
Возможны четыре варианта положения среднего термина. Соответственно, существуют четыре фигуры простого категорического силлогизма и специальные правила вывода.
1) В первой фигуре средний термин занимает место субъекта в большей посылке и место предиката в меньшей посылке. Правило этой фигуры гласит: большая посылка должна быть общей, меньшая посылка утвердительной, вывод - общий. Например:
Все злаки (М) - растения (Р) M P
Рожь (S) - злак (М) S M
Рожь (S) - растение (Р) S - P
Может возникнуть вопрос: а может быть эти правила надуманные, может быть, можно получить правильные выводы и, не соблюдая нормативных требований дедуктивной логики? Рассмотрим на примерах неправомерность подобных сомнений и необходимость строгого следования правилам мышления.
Что произойдет, если нарушим эти правила? Допустим, сделаем большую посылку не общей, а частной:
Некоторые растения - злаки
Рожь - растение
?
Напрашивается ложный вывод, что некоторые виды ржи - это злаки.
Или, например, сделаем меньшую посылку не утвердительной, а отрицательной:
Рожь - злак
Пшеница - не рожь
?
Напрашивается также ложный вывод, будто пшеница - не злак.
Рассмотренные нами примеры нарушения правил первой фигуры наглядно показывают, что для получения истинного вывода в простом категорическом силлогизме нужно строго руководствоваться нормативными требованиями мышления с учетом характера фигуры. Это относится ко всем другим фигурам простого категорического силлогизма.
2) Во второй фигуре средний термин в обеих посылках занимает место предиката. Правило этой фигуры гласит: большая посылка должна быть общим суждением, одна из посылок - отрицательным суждением и вывод - отрицательный. Например:
Все люди мыслят P M
ЭВМ не мыслит S M
ЭВМ - не человек S не есть P
3) В третьей фигуре средний термин в обеих посылках занимает место субъекта. Правило этой фигуры следующее: меньшая посылка должна быть утвердительным суждением и вывод - частный. Например:
Все металлы - химические элементы M P
Все металлы - проводят электричество M S
Некоторые химические элементы Некоторые S - P
проводят электричество.
4) В четвертой фигуре средний термин занимает место предиката в большей посылке и место субъекта в меньшей посылке. Специального правила этой фигуры не существует. Вследствие малоинформативности она используется редко. Умозаключения по данной фигуре строятся с учетом общих для всех фигур правил терминов и правил посылок. Например:
Некоторые виды расчетов (S) P M
осуществляются безналично (М)
Безналичный расчет (М) - часть
денежного оборота (Р) M S
Некоторые виды расчета (S) являются Некоторые P - S
частью денежного оборота (Р).
Следует иметь в виду, что по данной фигуре можно получить лишь частный вывод.
Но надо учитывать, что даже в такой строгой науке, как классическая логика, из правил иногда следуют исключения. Например, в некоторых случаях из общих посылок можно получить частный вывод, или сформулировать правильное умозаключение из двух частных посылок.
Поэтому необходимо также учитывать модусы, то есть качественные и количественные разновидности посылок и вывода по каждой фигуре.
Сколько же модусов имеется в простом категорическом силлогизме?
Подсчет можно осуществить следующим образом. В каждой фигуре имеются три суждения, то есть две посылки и вывод. Каждое суждение может относиться к одному из четырех разновидностей (A, I, Е, О). Следовательно, в каждой фигуре могут быть 4х4х4=64 модуса. В четырех фигурах, соответственно, 64х4=256 модусов. Однако правильные выводы дают только 24 модуса, из которых 5 являются так называемыми ослабленными модусами. Итого, из 256 модусов правильными сильными являются только 19 модусов. Но и эти модусы чаще всего сводят к модусам первой фигуры, которых всего четыре.
I фигура имеет следующие правильные сильные модусы:
ААА (Barbara) Эти слова не несут никакой смы-
ЕАЕ (Celarent) словой нагрузки. Они придума-
АII (Darii) ны еще средневековыми логика-
ЕIО ( Ferio) ми в качестве мнемонического
правила, облегчающего запоми-
нание модусов.
Нетрудно заметить, что модус Barbara свидетельствует: из двух общеутвердительных посылок получается общеутвердительный вывод. Модус Celarent означает, что если одна из посылок отрицательная, то вывод - отрицательный. Модусы Darii и Ferio означают, что при одной частной посылке вывод будет частный.
II фигура имеет правильные сильные модусы:
AEE, AOO, ЕАА, EIO.
III фигура имеет правильные сильные модусы:
AAI, ЕАО, IAI, ОАО, AII, EIO.
IV фигура имеет правильные сильные модусы:
AII, АЕЕ, IAI, ЕАО, ЕIO.
Конечно же при соблюдении всех этих формально-логических требований необходимо всякий раз проверять свои рассуждения на здравый смысл, на соответствие их действительности. Если одна из посылок или обе посылки являются изначально ложными, то получение даже формально правильного вывода следует рассматривать не как истину, а как софистический прием, изощренное логическое ухищрение
Контрольные вопросы и упражнения
1. Проверьте себя, насколько глубоко Вы поняли сущность умозаключения и правила вывода в дедуктивной логике?
а) Что такое умозаключение как логическая форма мышления? Назовите известные Вам виды умозаключений.
б) Раскройте смысл дедуктивного умозаключения и назовите имена тех, кто внес наибольший вклад в развитие дедуктивной логики.
в) Что такое простой категорический силлогизм и какова его структура?
г) Какие Вам известны правила терминов, влияющие на характер вывода в простом категорическом силлогизме. Покажите на примерах.
е) Какие Вам известны правила фигур, влияющие на характер вывода в простом категорическом силлогизме? Проиллюстрируйте примерами.
ж) Что такое модусы простого категорического силлогизма? Назовите модусы первой фигуры и выразите их символически.
з) Что означает логическая ошибка “учетверение терминов”? Покажите на примере.
2. Определите большую, меньшую посылки и выводы в следующих силлогизмах:
а) В системе экономических проблем есть такие, решение которых не терпит отлагательства. Охрана окружающей среды - насущная проблема. Охрана окружающей среды не терпит отлагательства.
б) Основа экономического оздоровления общества - установление рыночных отношений. Современное состояние общества требует экономического оздоровления. Современное состояние общества требует установления рыночных отношений.
в) Принципы общечеловеческой морали регулируют взаимоотношения людей в общественной и личной жизни. Важнейшим регулятором взаимоотношений людей является уважение к женщине. Уважение к женщине - один из принципов общечеловеческой морали.
3. Определите фигуру и модус простых категорических силлогизмов:
а) Менеджмент - форма управления предприятием в условиях рыночной экономики, а целью такого управления является достижение наивысшей эффективности материального и духовного производства. Следовательно, целью менеджмента является достижение наивысшей эффективности материального и духовного производства.
б) Кредит представляет собой ссуду в денежной или товарной форме на условиях возвратности. Кредит выражает экономические отношения между кредитором и заемщиком, следовательно, некоторые экономические отношения выражаются в виде ссуды в денежной форме на условиях возвратности.
в) Ярмарка - это временный торг, разрешенный государством, а этот временный торг не разрешен государством. Следовательно, этот временный торг не является ярмаркой.
4. Являются ли правильными следующие силлогизмы, если нет, то какие правила вывода в них нарушены?
а) Все металлы хорошо проводят электричество. Все металлы хорошо проводят тепло. Следовательно все теплопроводные вещества хорошо проводят электричество.
б) Все преступления достойны наказания, а данное деяние является преступлением. Следовательно, данное деяние достойно наказания.
в) Некоторые страны являются континентальными. Некоторые страны расположены в горной местности. Следовательно, некоторые континентальные страны расположены в горной местности.
5. Сделайте выводы из предложенных посылок. Если вывода сделать нельзя, то объясните почему?
а)
Птицы дышат легкими
Дельфины дышат легкими.
?
б)
Некоторые животные живут в воде
Некоторые животные не живут в воде
?
в)
Все самолеты тяжелее воздуха
Планер - не самолет
?
6. Придумайте и запишите в форме естественного языка следующие модусы: ААА, АII, ЕАЕ, EIO.