П падение тела
Вид материала | Документы |
- Тема «кинематика материальной точки», 29.33kb.
- Урок изучения новых знаний в 9-м классе по теме: "Свободное падение тел", 145.66kb.
- Программа вступительных испытаний по физике механика, 48.4kb.
- Тема: строение тела животных, 47.92kb.
- Конспект урока физики в 7 классе Тема : Вес тела, 40.5kb.
- Тема. Малые тела Солнечной системы, 383.39kb.
- Книга о душе, 521.77kb.
- Владимир Данченко принципиальные вопросы общей теории чакр и тантрическая концепция, 1664.57kb.
- Беседа – лекция. Прием наркотика – всегда полет, но в конце – всегда падение, 76.9kb.
- Беседа – лекция. Прием наркотика – всегда полет, но в конце – всегда падение, 83.01kb.
П
ПАДЕНИЕ ТЕЛА, движение тела в поле тяготения Земли с нач. скоростью, равной нулю. П. т. происходит под действием силы тяготения, зависящей от расстояния r до центра Земли, и силы сопротивления среды {воздуха или воды), к-рая зависит от скорости v движения. На П. т. по отношению к поверхности Земли влияет также её суточное вращение с угл. скоростью 0,0000729 рад/с.
Если пренебречь несферичностью Земли и влиянием её вращения (ввиду малости ), а также сопротивлением воздуха, что практически можно делать при падении или с очень малой высоты (когда скорость падения мала) или с очень большой высоты (когда осн. часть пути проходит в безвоздушном пр-ве), то движение центра тяжести падающего тела будет происходить по прямой, направленной к центру Земли. При П. т. с очень малой по сравнению с радиусом Земли R высоты h, отсчитываемой от земной поверхности, зависимостью силы тяготения от r можно пренебречь и считать, что центр тяжести тела движется с пост. ускорением g0 (ускорение силы тяготения) и со скоростью, увеличивающейся по закону:
где х — пройденный путь, отсчитываемый от нач. положения. При П. т. с большой высоты h необходимо учитывать зависимость силы тяготения от расстояния r=R+h-х. Ускорение центра тяжести падающего тела изменяется при этом по закону: w=g0R2/r2,а скорость —по закону:
При x=h ф-ла (2) даёт скорость в момент падения на Землю, а при h<
Осн. влияние вращения Земли на П. т. с малой высоты учитывается прибавлением к силе тяготения переносной силы инерции. Сумма этих двух сил даёт направленную по вертикали силу тяжести Р, численно равную весу тела, под действием к-рой и происходит П. т. При этом ускорение свободного падения (ускорение силы тяжести) g несколько отличается от g0 как численно, так и по направлению и зависит от географич. широты . Дополнит. влияние вращения Земли, учитываемое введением Кориолиса силы инерции, вызывает в первом приближении отклонение падающих тел от вертикали к востоку.
На П. т. существенно влияет сопротивление среды, силы к-рого F=0,5 cxSv2, где S — площадь миделевого сечения, — плотность воздуха, сх — коэфф. сопротивления, зависящий от формы тела и в общем случае от его скорости. При падении в воздухе с высоты h<<R можно считать , g и сх постоянными, тогда скорость падения
v=vпр(1-exp (-2gx)/v2пр), (3)
где vпр=(2P/cxS). Из ф-лы (3) видно, что с возрастанием х скорость v стремится к vпр, наз. предельной скоростью падения. Когда сх и S достаточно велики, значение v становится близким к vпр на небольшом нач. участке .пути
и дальнейшее П. т. происходит с практически пост. скоростью vпр.
С. М. Тарг.
ПАР, термин, обозначающий газообразное состояние в-ва в условиях, когда газовая фаза может находиться в равновесии с жидкой (твёрдой) фазой того же в-ва. Как правило, этот термин применяют в тех случаях, когда фазовое равновесие осуществляется при темп-pax Т и давлениях р, характерных для обычных природных условий (говорят, напр., о П. спирта, бензола, иода, нафталина). Для мн. физ. задач понятия «пар» и «газ» эквивалентны.
Различают след. виды состояний П. химически чистых в-в: насыщенный пар— П. при Т и р насыщения; н е н а с ы щ е н н ы й п а р (п е р е г р е т ы й) — П. при Т >Tнасыщ для данного р и, следовательно, с плотностью, меньшей, чем у насыщенного П.; п е р е с ы щ е н н ы й п а р — П., имеющий давление большее, чем рнасыщ при той же температуре.
ПАР РОЖДЕНИЕ, см. Рождение пары.
ПАРА СИЛ, система двух сил Р и Р', действующих на тв. тело, равных по абс. величине и направленных параллельно, но в противоположные стороны, т. е. Р'=-Р. П. с. не имеет равнодействующей, т. е. её нельзя заменить (а следовательно, и уравновесить) одной силой.
Расстояние l между линиями действия сил пары наз. плечом П. с. Действие, оказываемое П. с. на тв. тело, характеризуется её моментом, к-рый изображается вектором M, равным по абс. величине Рl и направленным перпендикулярно к плоскости действия П. с. в сторону, откуда
516
поворот, совершаемый П. с., виден происходящим против хода часовой стрелки (в правой системе координат). Основное св-во П. с.: действие, оказываемое ею на данное тв. тело, не изменяется, если П. с. переносить куда угодно в плоскости пары или в плоскости, ей параллельной, а также если изменять абс. величину сил пары и длину её плеча, сохраняя неизменным момент П. с. Т. о., момент П. с. можно считать приложенным к любой точке тела. Две П. с. с одинаковыми моментами М, приложенные к одному и тому же тв. телу, механически эквивалентны одна другой. Любая система П. с., приложенных к данному тв. телу, механически эквивалентна одной П. с. с моментом, равным геом. сумме векторов — моментов этих П. с. Если геом. сумма векторов — моментов некоторой системы П. с. равна нулю, то эта система П. с. явл. уравновешенной.
С. М. Тарг.
ПАРАБОЛИЧЕСКОЕ ЗЕРКАЛО, см. Зеркало оптическое.
ПАРАКСИАЛЬНЫЙ ПУЧОК ЛУЧЕЙ света, пучок лучей, распространяющихся вдоль оси центрированной оптич. системы и образующих очень малые углы с осью и нормалями к преломляющим и отражающим поверхностям системы. Осн. соотношения, описывающие образование изображений оптических в осесимметричных системах, строго справедливы только для П. п. л. Только в изображениях, создаваемых такими лучами, отсутствуют аберрации оптических систем (кроме хроматической аберрации в линзовых системах). На практике, однако, под П. п. л. обычно понимают пучок лучей, проходящих под конечными (неск. градусов) углами, для к-рых отступления от строгих соотношений настолько малы, что ими можно пренебречь. Область вокруг оптич. оси системы, в к-рой лучи можно считать параксиальными, тоже наз. параксиальной.
ПАРАЛЛЕЛОГРАММ СИЛ, геометрич. построение, выражающее закон сложения сил: вектор, изображающий силу, равную геом. сумме двух сил, явл. диагональю параллелограмма, построенного на этих силах, как на его сторонах. Для двух сил, приложенных к телу в одной точке, сила, найденная построением П. с., является одноврем. равнодействующей данных сил (аксиома П. с.).
ПАРАМАГНЕТИЗМ (от греч. para — возле, рядом и магнетизм), свойство в-в (парамагнетиков), помещённых во внеш. магн. поле, намагничиваться (приобретать магнитный момент) в направлении, совпадающем с направлением этого поля. Т. о., внутри парамагнетика к действию внеш. поля прибавляется действие возникшей намагниченности J. В этом отношении П. противоположен диамагнетизму. Парамагнитные тела притягиваются к полюсам магнита (диамагнитные — отталкиваются). Характерным для парамагнетиков св-вом намагничиваться по полю обладают также ферромагнетики, ферримагнетики и антиферромагнетики. Однако в отсутствии внеш. поля намагниченность парамагнетиков равна нулю и они не обладают магнитной структурой атомной, в то время как ферро-, ферри- и антиферромагнетики сохраняют магн. структуру. Термин «П.» ввёл в 1845 М. Фарадей, к-рый разделил все в-ва (кроме ферромагнитных) на диа- и парамагнитные. П. характерен для в-в, частицы к-рых (атомы, молекулы, ионы, ат. ядра) обладают собств. магн. моментом, но в отсутствии внеш. поля эти моменты ориентированы хаотически, так что в целом J=0. Во внеш. поле магн. моменты атомов парамагн. в-в ориентируются преимущественно по полю, с ростом поля намагниченность парамагнетиков растёт по закону J=H, где — магнитная восприимчивость 1 см3 в-ва, для парамагнетиков ~10-7—10-4 и всегда положительна. Если поле очень велико, то все магн. моменты парамагн. ч-ц будут ориентированы строго по полю (магнитное насыщение). С повышением темп-ры Т при неизменной напряжённости поля возрастает дезориентирующее действие теплового движения ч-ц и магн. восприимчивость убывает — в простейшем случае по Кюри закону = С/Т (С — постоянная Кюри). Отклонения от закона Кюри (см. Кюри— Вейса закон) в осн. связаны с взаимодействием ч-ц (влиянием внутрикристаллического поля).
Существование у атомов (ионов) магн. моментов, обусловливающих П. в-в, может быть связано с движением эл-нов в оболочке атома (орбитальный П.), со спиновым моментом самих эл-нов (спиновый П.), с магн. моментами ядер атомов (ядерный парамагнетизм). Магн. моменты атомов, ионов, молекул создаются в осн. их эл-нами, чьи моменты примерно в тысячу раз превосходят маги. моменты ат. ядер (см. Магнетон).
П. металлов слагается в осн. из спинового П., свойственного эл-нам проводимости (т. н. п а р а м а г н е т и з м П а у л и), и П. электронных оболочек атомов (ионов), составляющих крист. решётку металла. Поскольку движение эл-нов проводимости металлов практически не меняется при изменении темп-ры, П., обусловленный эл-нами проводимости, от темп-ры не зависит. Поэтому, напр., щелочные и щёлочноземельные металлы, у к-,рых электронные оболочки ионов лишены магн. момента, а П. обусловлен исключительно эл-нами проводимости, обладают магн. восприимчивостью, не зависящей от темп-ры. В в-вах, в к-рых нет эл-нов проводимости, магн. моменты электронных оболочек атомов скомпенсированы, магн. моментом обладает лишь ядро (напр., у изотопа гелия 3Не) и П. крайне мал (~10-9—10-12), он может наблюдаться лишь при сверхнизких температурах (Т ~ 0,1 К).
Парамагн. восприимчивость диэлектриков, согласно классич. теории П. Ланжевена (1906), определяется ф-лой д = N2a/3kT, где N — число парамагн. атомов в 1 моле в-ва, a — магн. момент атома. Эта ф-ла была получена методами статистической физики для системы практически не взаимодействующих атомов, находящихся в с л а б о м магн. поле или при в ы с о к о й темп-ре (когда aH <
Яд. П. при отсутствии сильного вз-ствия между спинами ядер и электронными оболочками атомов характеризуется величиной я=N2я/3kT (я — магн. момент ядра), к-рая прибл. в 106 раз меньше электронной парамагн. восприимчивости (э~103я). Исследование П. в-в, а также электронного парамагнитного резонанса позволяет определять магн. моменты отд. атомов, ионов, молекул, ядер, изучать строение сложных молекул и мол. комплексов, а также осуществлять тонкий структурный анализ материалов, применяемых в технике. Парамагн. в-ва используют для получения сверхнизких темп-р (ниже 1 К, см. Магнитное охлаждение).
• Вонсовский С. В., Магнетизм, М., 1971; Д о р ф м а н Я. Г., Магнитные свойства и строение вещества, М., 1955; А б р а г а м А., Ядерный магнетизм, пер. с англ.,
517
М., 1963; Киттель Ч., Введение в физику твердого тепа, пер. с англ., М., 1978.
Я, Г. Дорфман.
ПАРАМАГНЕТИК, вещество, намагничивающееся во внеш. магн. поле по направлению поля. В отсутствии внеш. магн. поля П. немагнитен. Атомы (ионы) П. обладают собств. магнитным моментом, но ориентация моментов в пр-ве имеет хаотич. характер, так что П. не обладают магн. структурой, присущей, напр., ферромагнетикам. Под действием внеш. магн. поля магн. моменты атомов (ионов) П. (у парамагн. металлов — спины части эл-нов проводимости) ориентируются преим. по направлению поля. В результате П. приобретает намагниченность J, пропорциональную напряжённости поля If и направленную по полю. Магнитная восприимчивость П. =J/H всегда положительна. Её абс. значение невелико (см. табл.), в слабых полях она не зависит от напряжённости магн.
магнитная восприимчивость некоторых парамагнитных веществ ( — восприимчивость
1 моля ВЕЩЕСТВА В НОРМАЛЬНЫХ УСЛОВИЯХ)*
* Числовые данные приведены в СГС системе единиц (симметричной).
поля, но очень сильно зависит от темп-ры (исключение составляет ряд металлов, подробнее см. Парамагнетизм). П. свойствен многим элементам в металлич. состоянии (щелочным и щёлочноземельным металлам, нек-рым металлам переходных групп с незаполненным d- или f-слоем электронной оболочки — группы железа, палладия, платины, актиноидов, а также сплавам этих металлов); солям группы железа, группы редкоземельных элементов от Се до Yb, группы актиноидов и водным р-рам этих солей, парам щелочных металлов и молекулам газов (напр., О2 и NO); небольшому числу органич. молекул («бирадикалам»); ряду комплексных соединений. Существуют также П., у к-рых парамагнетизм обусловлен магн. моментами ат. ядер (напр., 3Не при Г < 0,1. К). П. становятся ферро-, ферри- и антиферромагн. в-ва при темп-pax, превышающих, соответственно, темп-ру Кюри или Нееля (темп-ру фазового перехода в парамагн. состояние).
ПАРАМЕТР УДАРА, то же, что прицельный параметр.
ПАРАМЕТРИЧЕСКАЯ ГЕНЕРАЦИЯ И УСИЛЕНИЕ ЭЛЕКТРОМАГНИТНЫХ КОЛЕБАНИЙ, генерация и усиление эл.-магн. колебаний за счёт работы, совершаемой внеш. источниками при периодич. изменении во времени реактивных параметров колебат. системы (ёмкости С и индуктивности L). П. г. и у. э. к. основаны на явлении параметрического резонанса. Простейший параметрич. генератор представляет собой колебательный контур, в к-ром С или L изменяются периодически около нек-рых ср. значений С0 и L0 с частотой н=20, где 0 — частота собств. колебаний контура с пост. параметрами. Если, напр., ёмкость изменяется синусоидально:
C(t)=C0(1+mcosяt), (1)
где m= (Смакс -Cмин)/(Cмакс+Cмин) глубина изменения ёмкости, то при т > m*=2/Q (Q — добротность контура) энергетич. потери меньше энергии накачки за период колебаний, и в контуре происходит самовозбуждение колебаний с последующим установлением стационарного режима генерации (мягкий режим генерации). При определ. условиях самовозбуждения не происходит, но внеш. возбуждение контура достаточно сильным сигналом приводит к установлению незатухающих колебаний (жёсткий режим генерации).
«Недовозбуждённый» контур, в котором параметрич. накачка энергии несколько меньше потерь энергии (m
Схема двухконтурного параметрического усилителя.
такого усилителя заключается в зависимости коэфф. усиления от фазы усиливаемого сигнала по отношению к фазе «накачки», изменяющей ёмкость. От этого недостатка свободны двухконтурные усилители (рис.), где по закону (1) обычно изменяется ёмкость связи между контурами C(t), а частоты норм. колебаний 1, 2 удовлетворяют соотношению н=1±2. Если связь между контурами слабая, а их добротности Q1 и Q2 достаточно велики, то значения 1 и 2 близки к собств. частотам контуров. Один из них настраивается на частоту входного сигнала, а другой («холостой») — на разностную частоту 2= н-1. Выходная нагрузка может быть включена как в первый контур (усиление на частоте сигнала), так и во второй (усиление с преобразованием частоты). Коэфф. усиления при этом хотя и различны, но в обоих случаях пропорц. 1/(1- m/m*)2, где теперь m*—
=(C1C2/C2Q1Q2) (C1, С2 —ёмкости контуров), и при m m*, как и в одноконтурном усилителе, наступает самовозбуждение (р е г е н е р а т и в н ы е у с и л и т е л и).
В др. случае, когда «холостой» контур настраивается на суммарную частоту 2=н+1, самовозбуждение невозможно; энергия сигнала и накачки преобразуется в энергию колебаний на частоте 2, в результате возможно усиление колебаний, снимаемых со второго контура, по сравнению с входным сигналом. Такой н е р е г е н е р а т и в н ы й у с и л и т е л ь-п р е о б р а з о в а т е л ь имеет небольшой коэфф. усиления, однако его достоинствами явл. устойчивость и широкополосность. В двухконтурных усилителях обоих типов фаза колебаний в «холостом» контуре автоматически устанавливается оптимальной для усиления, так что коэфф. усиления не зависит от фазы сигнала.
Возможность создания параметрич. генератора и усилителя эл.-магн. колебаний была выяснена Л. И. Мандельштамом и Н. Д. Папалекси (1931 — 1933). Они разработали параметрич. машины (ёмкостные и индуктивные), преобразующие механич. энергию в электрическую за счёт изменений С или L (при вращении вала), приводящих к параметрической генерации. Однако практич. применение параметрические устройства получили в 50-е гг., когда появились полупроводниковые параметрич. диоды, ёмкость к-рых зависит от приложенного запирающего напряжения, и были изучены св-ва сегнетоэлектриков (конденсатор с сегнетоэлектриком — переменная ёмкость), ферритов и сверхпроводников (переменная индуктивность). Периодич. изменение параметров достигается подключением к системе источника «накачки» с частотой н.
В высокочувствит. приёмных устройствах СВЧ диапазона, используемых в системах радиолокации, радиоастрономии и др., применяются двухконтурные параметрич. усилители, обладающие низким уровнем собств. шумов в сочетании с простотой и надёжностью конструкции. В качестве колебат. систем в СВЧ диапазоне используются объёмные резонаторы и элементы волноводной техники, а в ка-
518
честве переменных ёмкостей — ВЧ параметрич. диоды. Для дополнит. снижения собств. шумов применяется охлаждение до темп-р жидкого гелия. Используются также электроннолучевые параметрические усилители, в к-рых усиление сигнала достигается модуляцией электронного пучка. Иногда применяются параметрические усилители бегущей волны в виде цепочки резонаторов с параметрич. диодами, по к-рой распространяется сигнал. При надлежащей настройке резонаторов в них можно получить усиление в широкой полосе частот.
В оптич. диапазоне для создания параметрич. генераторов и усилителей используются среды, параметры к-рых изменяются полем бегущей или стоячей волны накачки. В частности, если диэлектрическая проницаемость среды изменяется но закону:
(