П падение тела
Вид материала | Документы |
- Тема «кинематика материальной точки», 29.33kb.
- Урок изучения новых знаний в 9-м классе по теме: "Свободное падение тел", 145.66kb.
- Программа вступительных испытаний по физике механика, 48.4kb.
- Тема: строение тела животных, 47.92kb.
- Конспект урока физики в 7 классе Тема : Вес тела, 40.5kb.
- Тема. Малые тела Солнечной системы, 383.39kb.
- Книга о душе, 521.77kb.
- Владимир Данченко принципиальные вопросы общей теории чакр и тантрическая концепция, 1664.57kb.
- Беседа – лекция. Прием наркотика – всегда полет, но в конце – всегда падение, 76.9kb.
- Беседа – лекция. Прием наркотика – всегда полет, но в конце – всегда падение, 83.01kb.
T=Tbc2/(c2+эln,T), (1)
где c2=0,01488 м•К (т. н. 2-я постоянная излучения), ,T — коэфф. поглощения тела, э — эффективная длина волны П.
Точность результата в первую очередь зависит от строгости выполнения условий пирометрич. измерений (коэфф. поглощения ,T близок к значению а абсолютно чёрного тела и др.). Для выполнения этих условий обычно наблюдают излучение, выходящее из полости с небольшим выходным отверстием, имитирующим абсолютно чёрное тело. Осн. инструментальная погрешность обусловлена нестабильностью температурной лампы. Заметную погрешность могут вносить также индивидуальные особенности глаза наблюдателя. У фотоэлектрических П. этот вид погрешности отсутствует. Погрешность образцовых лаб. фотоэлектрич. П. не превышает сотых долей К при Т ~ 1000 К. Образцовые яркостные П. приняты в качестве осн. интерполяционных приборов, определяющих Международную практическую температурную шкалу (МПТШ-68) при теми-pax выше точки затвердевания золота (1064,43°С).
533
Для измерения темп-ры тел, у к-рых коэфф. постоянен в оптич. диапазоне спектра, применяют цветовые П. Этими П. определяют отношение яркостей b1(1,T)/b2(2,Т) обычно в синей и красной областях спектра (напр., для длин волн 1=0,48 мкм и 2=0,60 мкм). Шкала прибора градуирована в °С и показывает цветовую температуру Тс. Истинная темп-pa Т тела определяется по ф-ле:
Точность цветовых П. ниже, чем у яркостных.
Наиболее чувствительны (но и наименее точны) радиац. П., или П. суммарного излучения, регистрирующие полное излучение тела. Действие их основано на Стефана — Больцмана законе излучения и Кирхгофа законе излучения. Объектив радиац. П. фокусирует наблюдаемое излучение на приёмник (обычно термостолбик или болометр), сигнал к-рого регистрируется прибором, калиброванным по излучению абсолютно чёрного тела и показывающим радиационную температуру Тr. Истинная темп-pa тела определяется по ф-ле:
Т=1/4TТr, (3)
где T— полный коэфф. поглощения тела. Радиац. П. можно измерять темп-ру начиная с 200°С. В пром-сти этот П. широко применяют в системах контроля и управления температурными режимами разнообразных технологич. процессов.
• Р и б о Г., Оптическая пирометрия, пер. о франц., М.—Л., 1934; Гордов А. Н., Основы пирометрии, 2 изд., М., 1971.
В. Н. Колесников.
ПИРОЭЛЕКТРИКИ, кристаллич диэлектрики, обладающие спонтанной поляризацией, т. е. поляризацией в отсутствии электрич. поля и др. внеш. воздействий. Спонтанная поляризация — результат несовпадения «центров тяжести» положит. и отрицат. зарядов.
Обычно наблюдается не сама спонтанная поляризация Р (она компенсируется полями свободных электрич. зарядов, натекающих на
поверхность П. изнутри и извне), а её изменение Р при быстром изменении темп-ры T (пироэлектрич. эффект). Плотность возникающего поверхностного заряда =рT наз. пироэлектрической константой р. Типичный П.— турмалин; в нём при изменении темп-ры на 1°С возникает электрич. поле Е ~400 В/см. П. могут быть лишь нецентросимметричные кристаллы. Изменение поляризации в П. может происходить и под действием механич. напряжений (пьезоэлектрич. эффект). Все П. явл. пьезоэлектриками, но не наоборот; нек-рые П. обладают сегнетоэлектрич. св-вами (рис.).
П. используются в технике в кач-ве индикаторов и приёмников излучений. • См. лит. при ст. Диэлектрики.
А. П. Лееанюк.
ПИРОЭЛЕКТРИЧЕСТВО (пироэлектрический эффект), появление электрич. зарядов на поверхности нек-рых кристаллов (пироэлектриков) при их нагревании или охлаждении. Один конец пироэлектрика при нагревании заряжается положительно, а при охлаждении отрицательно, другой -наоборот. Интенсивность электризации максимальна, если скорость изменения темп-ры выше скорости релаксации заряда. При изменении темп-ры на 1 К поверхностная плотность возникающего ряда, как правило, не превышает неск. сотен единиц (в системе СГСЭ). Появление зарядов на поверхности пироэлектрика связано с изменением существующей в нём поляризации при изменении темп-ры кристалла.
ПИТО ТРУБКА, Г-образная трубка для измерения динамич. напора текущей жидкости (газа). Названа по имени её изобретателя франц. учёного А. Пито (Н. Pitot; 1732). Применяется также как составная часть Прандтля трубки. См. также Трубки измерительные.
ПЛАВАНИЕ ТЕЛ, состояние равновесия тв. тела, частично или полностью погружённого в жидкость (или газ). Осн. задача теории П. т.— определение положений равновесия тела, погружённого в жидкость, выяснение условий устойчивости равновесия. Простейшие условия П. т. указывает Архимеда закон.
Осн. понятия теории П. т. (рис. 1):
1) водоизмещение тела — вес жидкости, вытесняемой телом в состоянии равновесия (совпадает с весом тела);
2) плоскость возможной грузовой ватерлинии — всякая плоскость аb, отсекающая от тела объём, вес жидкости в к-ром равен водоизмещению тела; 3) поверхность грузовых ватерлиний — поверхность I, в каждой точке к-рой касательная плоскость явл. плоскостью возможной грузовой ватерлинии; 4) центр водоизмещения (или центр величины) — центр тяжести А объёма, отсекаемого плоскостью возможной грузовой ватерлинии; 5) поверхность центров водоизмещения — поверхность II, являющаяся геометрич. местом центров водоизмещения.
Рис. 1. ab, a1b1, а2b2 — плоскости возможной грузовой ватерлинии; А, А1, А2 — центры водоизмещения для объёмов, отсекаемых плоскостями аb, a1b1, a2,b2; I — поверхность грузовых ватерлиний; II — поверхность центров водоизмещения.
Если тело погрузить в жидкость до к.-н. плоскости возможной грузовой ватерлинии аb (рис. 2), то на тело будут действовать направленная перпендикулярно этой плоскости (т. е. вертикально вверх) поддерживающая сила F, проходящая через центр А, и численно равная ей сила тяжести Р. Как доказывается в теории П. т., направление силы F совпадает одновременно с направлением нормали An к поверхности II в точке А.
Рис. 2. Силы, действующие на тело, погружённое в жидкость до грузовой ватерлинии аb.
В положении равновесия силы F и Р должны быть направлены вдоль одной прямой, т. е. нормаль к поверхности II, восстановленная из центра А, должна проходить через центр тяжести С тела (нормали А1С, А2С на рис. 1). Число нормалей к поверхности II, проходящих через центр тяжести С, даёт число возможных положений равновесия плавающего тела. Если тело вывести из положения равновесия, то на него будет действовать пара сил F, Р. Когда эта пара стремится вернуть тело в положение равновесия, равновесие устойчиво, в противном случае — неустойчиво. Об устойчивости равновесия можно судить по положению метацентра. Другой простой признак: положение равновесия устойчиво, если для него расстояние между центрами А и С явл. наименьшим по сравнению с этим расстоянием для соседних положений (на
534
рис. 1 при погружении до плоскости
а2b2 равновесие устойчиво, а до а1b1—
неустойчиво).
• Жуковский Н. Е., Теоретическая
механика, 2 изд., М.—Л., 1952.
С. М. Тарг.
ПЛАВЛЕНИЕ, переход в-ва из кристаллич. (твёрдого) состояния в жидкое, происходит с поглощением теплоты (фазовый переход I рода). Гл. хар-ками П. чистых в-в явл. температура плавления (Tпл) и теплота плавления (Lпл).
Темп-pa П. зависит от внеш. давления р; на диаграмме состояния чистого в-ва эта зависимость изображается кривой плавления (кривой сосуществования тв. и жидкой фаз, AD или AD' на рис. 1). П. сплавов и тв. растворов происходит, как правило, в определённом интервале темп-р (исключение составляют сплавы с пост. Tпл — эвтектики).
Рис. 1. Диаграмма состояния чистого в-ва (р — давление, T — темп-pa). Линии AD и AD' — кривые плавления, по линии AD' плавятся в-ва с аномальным изменением объёма при плавлении. Точка А — тройная точка; В — критич. точка.
Зависимость темп-ры начала и окончания П. сплава от его состава при данном давлении изображается на диаграммах состояния спец. линиями (кривые л и к в и д у с а и с о л и д у с а, рис. 2). У ряда высокомол. соединений (напр., в-в, способных образовывать жидкие
Рис. 2. Диаграмма состояния системы (напр., Cu—Ni), образующей непрерывный ряд жидких и твёрдых растворов. Жидкий раствор устойчив выше линии ликвидуса L, твёрдый — ниже линии солидуса S; между линиями L и S заключена двухфазная область равновесия твёрдых и жидких фаз.
Т — темп-pa, х — состав раствора (относит. кол-во компоненты В в компоненте А).
кристаллы) переход из тв. крист. состояния в изотропное жидкое происходит постадийно (в нек-ром температурном интервале), каждая стадия характеризует определённый этап разрушения крист. структуры.
Наличие определённой темп-ры П.— важный признак крист. строения тв. тел. По этому признаку их легко
отличить от аморфных тв. тел, к-рые не имеют фиксированной Tпл. Аморфные тв. тела переходят в жидкое состояние постепенно, размягчаясь при повышении темп-ры (см. Аморфное состояние).
Самую высокую темп-ру П. среди чистых металлов имеет вольфрам (3410°С), самую низкую — ртуть (-38,9°С). К особо тугоплавким соединениям относятся TiN (3200°C), HfN (3580°C), ZrC (3805°C), ТаС (4070°С), HfC (4160°C) и др. Как правило, для в-в с высокой Тпл характерны более высокие значения Lпл. Примеси, присутствующие в крист. в-вах, снижают Тпл. Этим пользуются на практике для получения сплавов с низкой Тпл (напр., у т. н. сплава Вуда, состоящего из 50% Bi, 25% Pb, 12,5% Sn и 12,5% Cd, Tпл=68°С) и охлаждающих смесей [напр., смесь из льда (42,8%) и К2СО3 (57,2%) плавится при -46°С].
Рис. 3. Остановка изменения темп-ры при плавлении крист. тела. По оси абсцисс отложено время , пропорциональное равномерно подводимому к телу кол-ву теплоты.
П. начинается при достижении крист. в-вом Тпл и протекает при пост. темп-ре (Тпл), несмотря на сообщение в-ву теплоты (рис. 3).
Рис. 4. Изменение темп-ры плавления Тпл (°С) щелочных металлов с увеличением давления р (кбар). Изломы на кривой плавления Cs указывают на существование у него при высоких давлениях двух полиморфных превращений (а и б).
Нагреть кристалл до Т>Тпл в обычных условиях не удаётся (см. Перегрев), тогда как при кристаллизации сравнительно легко достигается значит. переохлаждение расплава.
Хар-р зависимости Тпл от давления р определяется направлением объёмных изменений (Vпл) при П. (см.
Клапейрона — Клаузиуса уравнение). В большинстве случаев П. в-в сопровождается увеличением их объёма (обычно на неск. %). Если это имеет место, то возрастание давления приводит к повышению Тпл (рис. 4). Однако у нек-рых в-в (см. рис. 1) при П. происходит уменьшение объёма. Темп-ра П. этих в-в при увеличении давления снижается.
П. сопровождается изменением физ. св-в в-ва: увеличением энтропии, что отражает разупорядочение крист. структуры; ростом теплоёмкости; электрич. сопротивления [исключение составляют нек-рые полуметаллы (Bi, Sb) и полупроводники (Ge), в жидком состоянии обладающие более высокой электропроводностью]. Практически до нуля падает при П. сопротивление сдвигу (в расплаве не могут распространяться поперечные упругие волны), уменьшается скорость распространения звука (продольных волн) и т. д.
Согласно мол.-кинетич. представлениям, П. осуществляется след. образом. При подведении к крист. телу теплоты увеличивается энергия колебаний (амплитуда колебаний) его атомов, что приводит к повышению темп-ры тела и способствует образованию в кристалле разл. дефектов (незаполненных узлов крист. решётки — вакансий, нарушений периодичности решётки внедрившимися между её узлами атомами и др.; см. Дефекты в кристаллах). В мол. кристаллах может происходить частичное разупорядочение взаимной ориентации осей молекул, если молекулы не обладают сферич. симметрией. Постепенный рост числа дефектов и их объединение характеризуют стадию предплавления. С достижением Тпл в кристалле создаётся критич. концентрация дефектов, начинается П.— крист. решётка распадается на легкоподвижные субмикроскопич. области. Подводимая при П. теплота идёт не на нагрев тела, а на разрыв межатомных связей и разрушение дальнего порядка в кристаллах (см. Дальний и ближний порядок). В самих же субмикроскопич. областях ближний порядок в расположении атомов при П. существенно не меняется (координационное число расплава при Тпл в большинстве случаев остаётся тем же, что и у кристалла). Этим объясняются меньшие значения теплот плавления Lпл по сравнению с теплотами парообразования и сравнительно небольшое изменение ряда физ. свойств в-в при их П.
Процесс П. играет важную роль в природе (П. снега и льда на поверхности Земли, П. минералов в её недрах и т. д.), в науке и технике (производство чистых металлов и сплавов, литьё в формы и др.).
• Френкель Я. И., Кинетическая теория жидкостей, Собр. избр. трудов, т. 3, М.—Л., 1959; Данилов В. И., Строение и кристаллизация жидкости, К., 1956; У б-
535
б е л о д е А., Плавление и кристаллическая структура, пер. с англ., М., 1969; Л ю б о в Б. Я., Теория кристаллизации в больших объемах, М., 1975.
Б. Я. Любое.
ПЛАЗМА, частично или полностью ионизованный газ, в котором плотности положит. и отрицат. зарядов практически одинаковы. При сильном нагревании любое в-во испаряется, превращаясь в газ. Если увеличивать темп-ру и дальше, резко усилится процесс термич. ионизации, т. е. молекулы газа начнут распадаться на составляющие их атомы, к-рые затем превращаются в ионы. Ионизация газа, кроме того, может быть вызвана его вз-ствием с эл.-магн. излучением (фотоионизация) или бомбардировкой газа заряж. ч-цами.
Свободные заряж. ч-цы, особенно эл-ны, легко перемещаются под действием электрич. поля. Поэтому в состоянии равновесия пространственные заряды входящих в состав П. отрицат. эл-нов и положит. ионов должны компенсировать друг друга так, чтобы полное поле внутри П. было равно нулю. Именно отсюда вытекает необходимость практически точного равенства плотностей эл-нов и ионов в П.— её «к в а з и н е й т р а л ь н о с т и». Нарушение квазинейтральности в объёме, занимаемом П., ведёт к немедленному появлению сильных электрич. полей пространств. зарядов, тут же восстанавливающих квазинейтральность. С т е п е н ь ю и о н и з а ц и и П. наз. отношение числа ионизованных атомов к полному их числу в единице объёма П. Для многозарядных ионов следует учитывать кратность ионизации атомов. В зависимости от величины а говорят о слабо, сильно и полностью ионизованной П.
Средние энергии разл. типов ч-ц, составляющих П., могут отличаться одна от другой. В таком случае П. нельзя охарактеризовать одним значением темп-ры Т, и различают электронную темп-ру Те, ионную темп-ру Ti (или ионные темп-ры, если в П. имеются ионы неск. сортов) и темп-ру нейтр. атомов Та (нейтр. компоненты). Подобная П. наз. н е и з о т е р м и ч е с к о й, в то время как П., для к-рой темп-ры всех компонент равны, наз. изотермической.
Применительно к П. несколько необычный смысл (по сравнению с др. разделами физики) вкладывается в понятия «низкотемпературная» и «высокотемпературная». Низкотемпературной принято считать П. с Ti105 К, а высокотемпературной — П. с Ti106—108 К и более. Это условное разделение связано с особой важностью высокотемпературной П. в связи с проблемой осуществления управляемого термоядерного синтеза (УТС).
В состоянии П. находится подавляющая часть в-ва Вселенной — звёзды, звездные атмосферы, галактич туманности и межзвёздная среда. Около Земли П. существует в космосе в виде солнечного ветра, заполняет магнитосферу Земли (образуя радиационные пояса Земли) и ионосферу. Процессами в околоземной П. обусловлены магн. бури и полярные сияния. Отражение радиоволн от ионосферной П. обеспечивает возможность дальней радиосвязи на Земле.
В лаб. условиях и пром. применениях П. образуется в электрическом разряде в газах (дуговом разряде, искровом разряде, тлеющем разряде и пр.), в процессах горения и взрыва, используется в плазменных ускорителях, магнитогидродинамических генераторах, в установках для исследования УТС. Многими характерными для П. св-вами обладают совокупности эл-нов и дырок в полупроводниках и эл-нов проводимости (нейтрализуемых неподвижными положит. ионами) в металлах, к-рые поэтому наз. плазмой твёрдых тел. Её отличит. особенность — возможность существования при сверхнизких для «газовой» П. темп-pax — комнатной и ниже, вплоть до абс. нуля темп-ры.
Возможные значения плотности П. n расположены в очень широком диапазоне: от n~10-6см-3 в межгалактич. пространстве и n~10 в солнечном ветре до n~1022 для тв. тел и ещё больших значений в центр. областях звёзд.
Термин «П.» в физике был введён в 1929 амер. учёными И. Ленгмюром и Л. Тонксом, проводившими зондовые измерения параметров низкотемпературной газоразрядной П. Кинетика П. рассматривалась в работах Л. Д. Ландау в 1936 и 1946 и А. А. Власова в 1938. В 1942 X. Альфвен предложил уравнения магнитной гидродинамики для объяснения ряда явлений в косм. П. В 1950 в СССР и США была предложена идея магн. термоизоляции П. для осуществления УТС. В 50—80-е гг. 20 в. изучение П. стимулировалось разл. практич. применениями П., развитием астрофизики и космофизики (наблюдение косм. П. и объяснение процессов в ней) и физики верхней атмосферы Земли — особенно в связи с полётами косм. летат. аппаратов, а также интенсификацией исследований по проблеме УТС.
Основные свойства плазмы. В резком отличии св-в П. от св-в нейтр. газов определяющую роль играют два фактора. Во-первых, вз-ствие ч-ц П. между собой характеризуется кулоновскими силами притяжения и отталкивания, убывающими с расстоянием гораздо медленнее (т. е. значительно более «дальнодействующими»), чем силы вз-ствия нейтр. ч-ц. По этой причине вз-ствие ч-ц в П. является, строго говоря, не «парным», а «коллективным» — одновременно взаимодействует друг с другом большое число ч-ц. Во-вторых, электрич. и магн. поля очень сильно действуют на П., вызывая появление в П. объёмных зарядов и токов и обусловливая целый
ряд специфич. св-в П. Эти отличия позволяют рассматривать П. как особое, четвёртое состояние в-ва.
К важнейшим св-вам П. относится упомянутая выше квазинейтральность. Она соблюдается, если линейные размеры области, занимаемой П., много больше дебаевского радиуса экранирования
(ее и ei — заряды эл-нов и ионов, ne и ni — электронная и ионная плотности; здесь и ниже используется абс. система единиц Гаусса; см. СГС система единиц). Следовательно, лишь при выполнении этого условия можно говорить о П. как таковой. Электрич. поле отд. ч-цы в П. экранируется ч-цами противоположного знака, т. е. практически исчезает, на расстояниях порядка D от ч-цы. Величина D определяет и глубину проникновения внеш. электростатич. поля в П. Квазинейтральность может нарушаться вблизи поверхности П., где более быстрые эл-ны вылетают по инерции за счёт теплового движения на длину ~D (рис. 1).
П. наз. идеальной, если потенциальная энергия вз-ствия ч-ц мала по сравнению с их тепловой энергией. Это условие выполняется, когда число ч-ц в сфере радиуса D велико: ND=4/3 D3n>>1. В молнии T~2•104 К,
n~2,5•1019 (плотность воздуха) и, следовательно, D~10-7 см, но ND~1/10.
Рис. 1. Нарушение квазинейтральности плазмы на длине порядка дебаевского радиуса экранирования D.
Такую П. наз. с л а б о н е и д е а л ь н о й.
Помимо хаотич. теплового движения, ч-цы П. могут участвовать в упорядоченных «коллективных процессах», из к-рых наиболее характерны продольные колебания пространств. заряда, называемые л е н г м ю р о в с к и м и в о л н а м и. Их угловая частота (0=(4nе2/m) наз. плазменной частотой (e и m — заряд и масса эл-на). Многочисленность и разнообразие коллективных процессов, отличающие П. от нейтр. газа, обусловлены «дальностью» кулоновского вз-ствия ч-ц П., благодаря чему П. можно рассматривать как упругую среду, в к-рой легко возбуждаются и распространяются разл. шумы, колебания и волны.
В магн. поле с индукцией В на ч-цы П. действует Лоренца сила; в результате этого заряж. ч-цы П. вращаются с циклотронными частотами B= еВ/mс по л а р м о р о в с к н м с п и р а л я м (кружкам) радиуса B=v/b, где v— перпендикулярная B составляющая скорости ч-цы (подробнее см. Магнитные ловушки). В таком вз-ствии проявляется д и а-
536
м а г н е т и з м П.: создаваемые эл-нами и ионами круговые токи уменьшают внеш. магн. поле; при этом эл-ны вращаются по часовой стрелке, а ионы — против неё (рис. 2). Магн. моменты таких круговых токов равны =mv2/2B и в неоднородном поле на них действует (диамагнитная) сила, стремящаяся вытолкнуть ч-цу П. из области сильного поля в область более
Рис. 2. Вращение ионов и эл-нов по ларморовским спиралям. Радиус вращения иона (е>0) больше радиуса вращения эл-на (е<0).
слабого поля, что является важнейшей причиной неустойчивости П. в неоднородных полях.
Взаимные столкновения ч-ц в П. описывают эфф. поперечными сечениями, характеризующими «площадь мишени», в к-рую нужно «попасть», чтобы произошло столкновение. Напр., эл-н, пролетающий мимо иона на расстоянии т. н. п р и ц е л ь н о г о п а р а м е т р а (рис. 3), отклоняется силой кулоновского притяжения на угол , примерно равный отношению потенциальной энергии к кинетической, так что 2/, где =e2/mv2е2/kТ (здесь — прицельное расстояние, при к-ром угол отклонения 0=90°).
Рис. 3. Эл-н, пролетающий мимо иона, движется по гиперболе. — угол отклонения.
На большие углы ~1 рад рассеиваются все эл-ны, попадающие в круг с площадью близ42, к-рую можно назвать сечением «близких» столкновений. Если, однако, учесть и далёкие пролёты с >>, то эфф. сечение увеличивается на множитель =ln (D/), наз. к у л о н о в с к и м л о г а р и ф м о м. В полностью ионизованной П. обычно ~10—15, и вкладом близких столкновений можно вообще пренебречь (см. сказанное выше о «дальнодействии» в П.). При далёких же пролётах скорости ч-ц изменяются на малые величины, что позволяет рассматривать их движение как процесс диффузии в своеобразном «пространстве скоростей».
Если в П. не возбуждены к.-л. интенсивные колебания и неустойчивости, то именно столкновения ч-ц определяют её т. н. диссипативные св-ва — электропроводность, вязкость, теплопроводность и диффузию. В полностью ионизованной П. электропроводность
а не зависит от плотности П. и пропорциональна T3/2; при T~15•106К она превосходит электропроводность серебра, поэтому часто, особенно при быстрых крупномасштабных движениях, П. можно приближённо рассматривать как идеальный проводник, полагая . Если такая П. движется в магн. поле, то эдс при обходе любого замкнутого контура, движущегося вместе с П., равна нулю, что по закону Фарадея для электромагнитной индукции приводит к постоянству магн. потока, пронизывающего контур (рис. 4).
Рис. 4. Движение силовых линий магн. поля B вместе с плазмой (св-во вмороженности силовых линий), в — скорость среды.
Эта «приклеенность», или в м о р о ж е н н о с т ь, м а г н и т н о г о п о л я также относится к важнейшим свойствам П. (подробнее см. в ст. Магнитная гидродинамика). Ею обусловлена, в частности, возможность самовозбуждения (генерации) магн. поля за счёт увеличения длины магн. силовых линий при хаотич. турбулентном движении среды. Напр., в косм. туманностях часто видна волокнистая структура, свидетельствующая о наличии возбуждённого т. о. магн. поля.
Методы теоретического описания плазмы. Осн. методами являются: 1) исследование движения отд. ч-ц П.; 2) магнитогидродинамич. описание П.; 3) кинетич. рассмотрение ч-ц и волн в П. В разреженной П., где можно пренебречь столкновениями, заряж. ч-ца летит со скоростью v║ вдоль магн. силовой линии, быстро вращаясь по ларморовской спирали (рис. 2). При наличии возмущающей силы F ч-ца также медленно «дрейфует» в направлении, перпендикулярном как магн. полю, так и направлению силы F. Напр., в электрич. поле Е, направленном под углом к магнитному, происходит «электрич. дрейф» со скоростью vдр.эл.=cE/B (E — составляющая напряжённости электрич. поля, перпендикулярная магн. полю В). Если же E=0, но магн. поле неоднородно, то имеет место «центробежный дрейф» в направлении бинормали к силовой линии, а в продольном направлении диамагнитная сила тормозит ч-цу, приближающуюся к области более сильного магн. поля. При этом остаются неизменными полная энергия ч-цы
(т/2)(v2║+v2) и ее магн. момент =mv2/2B, являющийся адиабатич. инвариантом. Таково, напр., движение в магн. поле Земли косм. ч-ц (рис. 5), к-рые отражаются от полярных областей, где поле сильнее, и вместе с тем
дрейфуют вокруг Земли (протоны — на запад, эл-ны — на восток). Поле Земли является м а г н и т н о й л о в у ш к о й: оно удерживает захваченные им ч-цы в радиац. поясах. Аналогичными св-вами удержания П. обладают т. н. з е р к а л ь н ы е магн. ловушки, применяемые в исследованиях по УТС (подробнее см. Магнитные ловушки).
Рис. 5. Движение косм. ч-ц, захваченных магн. полем Земли.
При описании П. с помощью уравнений магн. гидродинамики она рассматривается как сплошная среда, в к-рой могут протекать токи. Вз-ствие этих токов с магн. полем создаёт объёмные электродинамич. силы, к-рые должны уравновешивать газодинамич. давление П., аналогичное давлению в нейтр. газе (см. Газовая динамика). В состоянии равновесия магн. силовые линии и линии тока должны проходить по поверхностям пост. давления. Если поле не проникает в П. (модель «идеального» проводника), то такой поверхностью является сама граница П., и на ней газодинамич. давление П. pгаз должно быть равно внеш. магн. давлению рмагн=В2/8. На рис. 6 показан простейший пример такого равновесия — т. н. скинированный зет-пинч, возникающий при разряде между двумя электродами.
Рис. 6. Образование перетяжек на канале разряда, сжатого собственным магн. полем: I — ток; В — индукция магн. поля, равная нулю внутри разряда.
Штриховка указывает линии тока на поверхности П. Равновесие зет-пинча неустойчиво — на нём легко образуются желобки, идущие вдоль магн. поля. При последующем развитии они превращаются в тонкие перетяжки и могут приводить к обрыву тока (подробнее см. Пинч-эффект). В мощных разрядах с токами ~106 А в дейтериевой П. такой процесс сопровождается нек-рым числом ядерных реакций и испусканием нейтронов, а также жёстких рентг. лучей, что впервые было обнаружено в 1952 Л. А. Арцимовичем, М. А. Леонтовичем и их сотрудниками.
Если внутри пинча создать продольное магн. поле В║, то, двигаясь из-за вмороженности вместе с П., оно своим давлением будет препятст-
537
вовать развитию перетяжек. Желобки и в этом случае могут возникать вдоль винтовых силовых линий полного магн. поля, складывающегося из продольного поля и поперечного поля B, к-рое создаётся самим током П. I║ . Это имеет место, напр., в т. н. равновесном тороидальном пинче. Однако при условии B║/B>R/a. (R и а — большой и малый радиусы тора, рис. 7) шаг винтовых силовых линий полного поля оказывается больше длины замкнутого плазменного шнура 2R, и желобковая неустойчивость, как показывает опыт, не развивается. Такие системы, наз. токамаками, используются для исследований по проблеме УТС.
Рис. 7. Токамак. Токи, текущие в проводящем кожухе, препятствуют смещению плазменного шнура.
При рассмотрении движения П. методами магн. гидродинамики необходимо учитывать степень вмороженности поля, определяемую магнитным числом Рейнольдса.
Наиболее детальным методом описания П. является кинетический, основанный на использовании функции распределения ч-ц по координатам и импульсам f=f(t,r,p). Импульс ч-цы р равен mv. В состоянии термодинамического равновесия эта функция имеет вид универсального Максвелла распределения, а в общем случае её находят из кинетического уравнения Больцмана:
Здесь F=eE+(e/c)[vB] — внеш. сила, действующая на заряж. ч-цу П., а член С (f) учитывает взаимные столкновения ч-ц. При рассмотрении быстрых движений П. столкновениями часто можно пренебречь, полагая C(f)0. Тогда кинетич. ур-ние наз. б е с с т о л к н о в и т е л ь н ы м у р а в н е н и е м В л а с о в а с самосогласованными полями E и В (они сами определяются движением заряж. ч-ц). Если П. полностью ионизована, т. е. в ней присутствуют только заряж. ч-цы, то их столкновения, ввиду преобладающей роли далёких пролётов (см. выше), эквивалентны процессу диффузии в пространстве импульсов (скоростей). Выражение С(f) для такой П. было получено Л. Д. Ландау и может быть записано в виде:
C(f)= (D•f--Fcf), где =д/др — градиент в импульсном пространстве, D — тензорный коэфф. диффузии в этом же пространстве, a Fc — сила взаимного (т. н. «динамического») трения ч-ц.
При высоких темп-pax и низкой плотности можно пренебречь столкновениями ч-ц с ч-цами в П. Однако в случае, когда в П. возбуждены волны к.-л. типа (см. ниже), необходимо учитывать «столкновения» ч-ц с волнами. При не слишком больших амплитудах колебаний в П. подобные «столкновения», как и при далёких пролётах, сопровождаются малыми изменениями импульса ч-ц, и член С(f) сохраняет свой «диффузионный» вид с тем отличием, что коэфф. D определяется интенсивностью волн. Важнейшим результатом кинетич. описания П. является учёт вз-ствия волны с группой т. н. р е з о н а н с н ы х ч а с т и ц, скорости к-рых совпадают со скоростью распространения волны. Именно эти ч-цы могут наиболее эффективно обмениваться с волной энергией и импульсом. В 1946 Л. Д. Ландау предсказал возможность основанного на таком обмене «бесстолкновительного затухания» ленгмюровских волн, впоследствии обнаруженного в опытах с П. Если направить в П. дополнит. пучок ч-ц, то подобный обмен может приводить не к затуханию, а к усилению волн. Этот эффект в известном смысле аналогичен Черенкова — Вавилова излучению.
Колебания и неустойчивости плазмы. Волны в П. отличают их объёмный характер и разнообразие св-в. С помощью разложения в ряд Фурье любое малое возмущение в П. можно представить
Рис. 8. Синусоидальный профиль плотности эл-нов в монохроматич. плазменной волне.
как набор волн простейшего синусоидального вида (рис. 8). Каждая такая (монохроматическая) волна характеризуется определённой частотой , длиной волны и фазовой скоростью распространения vваз. Кроме того, волны могут различаться поляризацией, т. е. направлением вектора электрич. поля в волне. Если это поле направлено вдоль скорости распространения, волна наз. продольной, а если поперёк — поперечной. В П. без магн. поля возможны волны трёх типов: продольные л е н г м ю р о в с к и е с частотой 0, продольные звуковые (точнее, и о н н о-з в у к о в ы е) и поперечные эл.-магн. (световые или радиоволны). Поперечные волны могут обладать двумя поляризациями и могут распространяться в П. без магн. поля, только если их частота со превышает плазменную частоту 0. В противоположном же случае <0 показатель преломления П. становится мнимым, и поперечные волны не могут распространяться внутри П., а отражаются её поверхностью
подобно тому, как лучи света отражаются зеркалом. Именно поэтому радиоволны с >~20 м отражаются ионосферой, что обеспечивает возможность дальней радиосвязи на Земле.
Однако при наличии магн. поля поперечные волны, резонируя с ионами и эл-нами на их циклотронных частотах, могут распространяться внутри П. и при <0. Это означает появление ещё двух типов волн в П., наз. а л ь ф в е н о в с к и м и и б ы с т р ы м и м а г н и т о з в у к о в ы м и. Альфвеновская волна представляет собой поперечное возмущение, распространяющееся вдоль магн. поля со скоростью vA=B/(4nMi) (Мi — масса ионов). Её природа обусловлена вмороженностью и упругостью силовых линий, к-рые, стремясь сократить свою длину и будучи «нагружены» ч-цами П., в частности массивными ионами, колеблются подобно натянутым струнам. Б ы с т р а я м а г н и т о з в у к о в а я волна в области малых частот по существу лишь поляризацией отличается от альфвеновской (их скорости близки и определяются магн. полем и инерцией тяжёлых ионов). В области же больших частот, где ионы можно считать неподвижными, она определяется инерцией эл-нов и имеет специфич. винтовую поляризацию. Поэтому здесь её наз. «геликонной ветвью» колебаний, или «ветвью вистлеров», т. е. свистов, поскольку в магнитосферной П. она проявляется в виде характерных свистов при радиосвязи (см. Свистящие атмосферики). Кроме того, в П. может распространяться м е д л е н н а я м а г н и т о з в у к о в а я волна, к-рая представляет собой обычную звуковую волну с хар-ками, несколько изменёнными магн. полем.
Т. о., при наличии магн. поля в однородной П. возможны волны шести типов: три высокочастотные и три низкочастотные. Если темп-pa или плотность П. в магн. поле неоднородны, то возникают ещё т. н. дрейфовые волны. При больших амплитудах возможны «бесстолкновительные» ударные волны (возбуждаемые, напр., на границе магнитосферы набегающим на Землю солнечным ветром), уединённые волны (солитоны), а также ряд др. «нелинейных» волн и, наконец, сильно развитая турбулентность движения П.
В неравновесной П. при определённых условиях возможна «раскачка неустойчивостей», т. е. нарастание к.-л. из перечисленных типов волн до нек-рого уровня насыщения. Возможны и более сложные случаи индуцированного возбуждения волн одного типа за счёт энергии волн др. типа.
Излучение плазмы. Спектр излучения низкотемпературной (напр., газоразрядной) П. состоит из отд. спектр. линий. В газосветных трубках, применяемых, в частности, для целей рекламы и освещения (лампы «дневного
538
света»), наряду с ионизацией происходит и обратный процесс — рекомбинация ионов и эл-нов, дающая т. н. р е к о м б и н а ц и о н н о е и з л у ч е н и е со спектром в виде широких полос.
Для высокотемпературной П. со значит. степенью ионизации характерно тормозное излучение с непрерывным спектром, возникающее при столкновениях эл-нов с ионами. В магн. поле ларморовское вращение эл-нов П. приводит к появлению т. н. м а г н и т о т о р м о з н о г о и з л у ч е н и я на гармониках циклотронной частоты, особенно существенного при больших (релятивистских) энергиях эл-нов. Важную роль в косм. П. играет вынужденное излучение типа обратного Комптона эффекта. Им, а также магнитотормозным механизмом, обусловлено излучение нек-рых косм. туманностей, напр. Крабовидной.
К о р п у с к у л я р н ы м и з л у ч е н и е м П. наз. быстрые ч-цы, вылетающие из неравновесной П. в результате развития разл. типов неустойчивостей. В первую очередь в П. раскачиваются к.-л. характерные колебания, энергия к-рых затем передаётся небольшой группе «резонансных» ч-ц (см. выше). По-видимому, этим механизмом объясняется ускорение малоэнергичных косм. ч-ц в атмосфере Солнца и в туманностях, образующихся при вспышках сверхновых звёзд типа пульсара в Крабовидной туманности.
Диагностика плазмы. Помещая в П. электрич. зонд (маленький электрод) и регистрируя зависимость тока от подаваемого напряжения, - можно определить темп-ру и плотность П. С помощью миниатюрной индукц. катушки — «магн. зонда» — можно измерять изменение магн. поля во времени. Эти способы связаны, однако, с активным вмешательством в П. и могут внести нежелат. загрязнения. К более чистым методам относится «просвечивание» П. пучками нейтр. ч-ц и пучками радиоволн. Лазерное просвечивание П. в разл. вариантах, в т. ч. с использованием голографии, является наиболее тонким и к тому же локальным методом лабораторной диагностики П.
Часто используют также пассивные методы диагностики — наблюдение спектра излучения П. (единств. метод в астрономии), вывод быстрых нейтр. атомов, образовавшихся в результате перезарядки ионов в П., измерение уровня радиошумов. Плотную П. изучают с помощью сверхскоростной киносъёмки (неск. млн. кадров в с) и развёртки оптической. В исследованиях по УТС регистрируется также рентг. спектр тормозного излучения и нейтронное излучение дейтериевой П. (см. также Диагностика плазмы).
Применение плазмы. Высокотемпературная П. (Т~108 К) из дейтерия и трития — осн. объект исследований по УТС. Такая П. создаётся путём
нагрева и быстрого сжатия П. током (используется также высокочастотный подогрев) либо путём инжекции высокоэнергичных нейтр. атомов в магн. поле, где они ионизуются, либо облучением мишени мощными лазерами или р е л я т и в и с т с к и м и э л е к т р о н н ы м и п у ч к а м и.
Низкотемпературная П. (Т~103 К) находит применение в газоразрядных источниках света и в газовых лазерах, в термоэлектронных преобразователях тепловой энергии в электрич. и в магнитогидродинамических генераторах (МГД-генераторах), где струя П. тормозится в канале с поперечным магн. полем В, что приводит к появлению
Рис. 9. Схема МГД-генератора, преобразующего кинетич. энергию движущейся плазмы в электрич. энергию. R — внеш. нагрузка генератора, по к-рой протекает ток I.
между верхним и нижним электродами (рис. 9) электрич. поля напряжённостью Е порядка Bv/c (v — скорость потока П.); напряжение с электродов подаётся во внеш. цепь.
Если «обратить» МГД-генератор, пропуская через П. в магн. поле ток от внеш. источника, образуется плазменный двигатель, весьма перспективный для длит. косм. полётов.
Плазмотроны, создающие струи плотной низкотемпературной П., широко применяются в разл. областях техники. В частности, с их помощью режут и сваривают металлы, наносят покрытия. В плазмохимии низкотемпературную П. используют для получения нек-рых хим. соединений, напр. галогенидов инертных газов, к-рые не удаётся получить др. путём. Кроме того, высокие темп-ры П. приводят к высокой скорости протекания хим. реакций — как прямых реакций синтеза, так и обратных реакций разложения. Если производить синтез «на пролёте» плазменной струи, расширяя и тем самым быстро охлаждая её на след. участке (такая операция наз. «закалкой»), то можно затруднить обратные реакции разложения и существенно повысить выход требуемого продукта.
•Арцимович Л. А., Элементарная физика плазмы, 3 изд., М., 1969; его же, Управляемые термоядерные реакции, 2 изд., М., 1963; Франк-Каменецкий Д. А., Лекции по физике плазмы, 2 изд., М., 1968; Альвен Г., Фельтхаммар К.-Г., Космическая электродинамика, пер. с англ., 2 изд., М., 1987; С п и т ц е р Л., Физика полностью ионизованного газа, пер. с англ., М., 1965; Гинзбург В. Л., Распространение электромагнитных волн в плазме, 2 изд., М., 1967; Трубников Б. А., Введение в теорию плазмы, ч. 1—3, М., 1969—78: Вопросы теории плазмы. Сб., под ред. М. А. Леонтовича, в. 1 —10, М., 1963—80.
Б. А. Трубников.
ПЛАЗМА ТВЁРДЫХ ТЕЛ, условный термин, означающий совокупность подвижных заряженных ч-ц в тв. проводниках (эл-нов проводимости в металлах или эл-нов и дырок в полупроводниках) в таких условиях, когда их св-ва близки к св-вам газоразрядной плазмы. Это позволяет перенести представления, созданные при исследовании газоразрядной плазмы, в физику тв. тела. П. т. т., в отличие от газоразрядной плазмы, имеет большую плотность n заряженных ч-ц (в газоразрядной плазме n~1012 см-3, в металлах n~1022—1023 см-3, в полупроводниках n~1015—1017 см-3). Это приводит к различию хар-к П. т. т. и плазмы газового разряда. Напр., плазменная частота, пропорциональная n, для П. т. т. существенно больше, чем для газоразрядной плазмы. Плазменные эффекты в П. т. т. (особенно в полупроводниках) используются для создания приборов СВЧ.
• Бауэрс Р., Плазма в твердых телах, в кн.: Физика твердого тела. Электронные свойства твердых тел, пер. с англ., М., 1972 (Над чем думают физики, в. 8); П л а т ц м а н Ф., В о л ь ф П., Волны и взаимодействия в плазме твердого тела, пер. с англ., М., 1975. См. также лит. при ст. Твёрдое тело. М. И. Каганов.
ПЛАЗМЕННАЯ ЧАСТОТА, см. Ленгмюровские волны, Плазма.
ПЛАЗМЕННЫЕ ДВИГАТЕЛИ, ракетные двигатели, в к-рых рабочее тело ускоряется, находясь в состоянии плазмы. Скорости истечения рабочего тела, достижимые в П. д., существенно выше скоростей, предельных для обычных газодинамич. (хим. или тепловых) двигателей. Увеличение скорости истечения позволяет получать данную тягу при меньшем расходе рабочего тела, что облегчает вес ракетной системы.
Практич. применение на сов. и амер. косм. летат. аппаратах нашли плазменные электрореактивные двигатели. В таких П. д. через рабочее тело пропускается электрич. ток от бортового источника энергии, в результате чего образуется плазма с темп-рой в десятки тыс. градусов. Эта плазма затем ускоряется либо газодинамически, либо за счёт силы Ампера, возникающей при вз-ствии протекающего по плазме тока с магн. полями (см. Плазменные ускорители).
Исследуются возможности создания П. д. на др. принципах. Так, существуют модели П. д., работающие на отдаче, вызванной разлётом продуктов разложения и испарения поверхностей тв. тел, облучаемых мощными импульсами лазерного излучения или импульсными электронными пучками. Обсуждается также схема яд. ракетного двигателя на основе ядерного реактора с газофазными (точнее, плазменными) тепловыделяющими элементами. В этом реакторе делящееся в-во должно находиться в состоянии плазмы с темп-рой в неск. десятков тыс.
539
градусов. При контакте с ним рабочее тело (напр., водород) будет нагреваться до соответствующих темп-р, что позволит получить скорости истечения в неск. десятков км/с.
• См. лит. при ст. Плазменные ускорители.
А. И. Морозов.
ПЛАЗМЕННЫЕ ИСТОЧНИКИ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ, преобразователи тепловой энергии плазмы в электрич. энергию. Существуют два типа П. и. э. э.— магнитогидродинамический генератор и термоэлектронный преобразователь.
ПЛАЗМЕННЫЕ НЕУСТОЙЧИВОСТИ, самопроизвольное нарастание отклонений от невозмущённого квазистационарного состояния плазмы (состояния равновесия, стационарного течения и т. п.). П. н. связаны либо с пространств. неоднородностью плазмы, либо с неравновесностыо распределения по скоростям.
С знергетич. точки зрения для возникновения П. н. необходим нек-рый избыток свободной энергии (над термодинамически равновесной) в невозмущённом состоянии плазмы. В зависимости от того, в какой форме энергии (магн., механич., тепловой) образуется избыток свободной энергии и в каком виде этот избыток высвобождается, различают разного вида П. н.: пучковые, магннтогидродинамич., дрейфовые, бесстолкновительные, параметрич., диссипативные, разрывные и т. д. Так, напр., если в разреженных плазмах невозмущённое состояние ионов и эл-нов плазмы описывается в виде суммы Максвелла распределения и дополнит. пучка ионов или эл-нов, движущегося со скоростью, превышающей нек-рое критич. значение (см. рис.), то в плазме возникают т.н. п у ч к о в ы е неустойчивости, к-рые приводят к самопроизвольному нарастанию ленгмюровских волн с фазовыми скоростями, несколько меньшими скорости пучка. Анизотропия функций распределения ч-ц плазмы в пространстве скоростей является также причиной анизотропных П. н. В плазме, помещённой в магн. поле, такие П. н. приводят к росту магнитоупругих колебаний (альфвеновские волны). Равновесные магнитогидродинамич. конфигурации могут обладать избытком свободной энергии в форме энергии магн. поля и энергии теплового расширения плазмы. Это т. н. к о н ф и г у р а ц и о н н ы й избыток свободной энергии. Высвобождение избытка энергии магн. поля при перестройке конфигурации явл. источником наиболее быстро развивающейся разновидности м а г н и т о г и д р о д и н а м и ч е с к о й П. н. Примером может служить неустойчивость плазменного шнура, сжатого магн. полем, протекающего по нему тока, т. н. т о к о в а я П. н. (наблюдается при пинч-эффекте).
Наиболее радикальным методом стабилизации конфигураций подобного типа явл. наложение достаточно сильного продольного магн. поля: H║>H║/2r (где H — магн. поле собств. тока; r — радиус плазменного шнура, ║ — продольная длина волны возмущения). Высвобождение конфигурац. избытка энергии при тепловом расширении плазмы связано с ж е л о б к о в ы м и П. н., к-рые представляют собой возмущения в виде вытянутых вдоль силовых линий магн. поля языков, расширяющихся поперёк силовых линий в сторону ослабевающего магн. поля. Возмущения такого типа приобретают характер перестановок целых элем. силовых трубок магн. поля, заполненных плазмой. Желобковая П. н. явл. магнитогидродинамич. аналогом конвективной неустойчивости в обычной гидродинамике.
Поскольку плазма, как сплошная среда, представляет собой систему с бесконечным числом степеней свободы, полный теор. анализ её устойчивости по отношению к разным видам возмущений практически неосуществим. Общепринятый подход в физике устойчивости плазмы состоит в последоват. рассмотрении разл. П. н., начиная с самых простых моделей — гидродинамических, с постепенным усложнением (вводя в рассмотрение эффекты конечной диссипации, многокомпонентность плазмы, кинетич. эффекты и т. п.).
Наиболее исследованы П. н. относительно малых возмущений, описываемые в теории плазмы линейными уравнениями. В задачах о П. н. равновесных магнитогидродинамич. конфигураций линеаризованные ур-ния теории устойчивости идеально проводящей плазмы можно привести к одному уравнению движения
в к-ром k — нек-рый линейный самосопряжённый дифф. оператор, действующий на ξ — смещение плазмы от равновесия, как на .функцию координат. Уравнение (1) аналогично ур-нию, описывающему колебания произвольной неоднородной упругой среды, где К играет роль соответствующего обобщённого коэфф. упругости. По аналогии с механикой упругих сред вводится потенциальная энергия малых колебаний
Если при всех смещениях ξ (r) энергия системы увеличивается (W>0), то система находится в устойчивом состоянии с наименьшей потенциальной энергией, и все отклонения от положения равновесия не могут нарастать во
времени. Если же W может принимать отрицат. значения, т. е. при нек-ром смещении система может перейти в состояние с меньшей потенциальной энергией, то рассматриваемая система неустойчива. Границу между устойчивыми и неустойчивыми конфигурациями образуют такие состояния, в к-рых исчезает упругость по отношению к одному определённому типу смещений. Для нахождения границы устойчивости обычно исследуют, при каких условиях появляются состояния, близкие к равновесному, с помощью уравнения kξ=0, т. е. соответствующие нулевым собственным частотам (т. н. безразличные равновесия). В линейной теории П. н. стационарных состояний нарастание флуктуации во времени носит экспоненциальный характер ~exp(vt). Здесь v — т. н. и н к р е м е н т н е у с т о й ч и в о с т и — величина, характеризующая степень неустойчивости системы, быстроту возбуждения в ней колебаний. Порядок величины инкремента самых быстрых магнитогидродинамич. неустойчивостей ~vlr, где r — характерный пространств. размер конфигурации, v — характерная скорость (альфвеновская либо скорость звука в зависимости от типа неустойчивости).
Часто состояния плазмы (равновесные конфигурации или течения), заведомо устойчивые в рамках идеального гидродинамич. рассмотрения, при учёте диссипативных эффектов (конечного электрич. сопротивления, вязкости и т. д.) оказываются неустойчивыми (т. н. диссипативные П. н.). Учёт неидеальности плазмы приводит к существенному снижению порога возникновения П. н. магнитогидродинамич. конфигураций и течений. Диссипативные П. н. характеризуются существенно меньшими инкрементами и имеют характер более «медленного просачивания» (тем медленнее, чем меньше электрич. сопротивление) по сравнению с бурной перестройкой исходной конфигурации при неустойчивости идеальной плазмы. Аналогом диссипативных П. н. в обычной гидродинамике явл. неустойчивость течения Пуазёйля. При наличии магн. поля новым важным типом указанных П. н. явл. р а з р ы в н ы е, сопровождающиеся изменением топологии магн. поля (разрыв и пересоединение силовых линий). Многокомпонентность плазмы также приводит к дополнительным П. н., наиболее важным среди к-рых явл. дрейфовые. Как правило, их характерные инкременты примерно в r/rH раз меньше идеальных магнитогидродинамических (rH — средний ларморовский радиус ионов плазмы).
Ответ на кардинальный вопрос — о конечной судьбе состояния плазмы в результате развития П. н. выходит за рамки линейной теории П. н. Как правило, учёт нелинейных эффектов останавливает первоначально экспонен-
540
циальный рост П. н. на уровне «насыщения». Универсального подхода для описания состояния насыщения П. н. не существует. В ряде случаев разработаны приближённые нелинейные модели. Как правило, П. н. исходных состояний, лежащих далеко за порогом неустойчивости, приводят к турбулентному состоянию насыщения. Так, напр., пучковые П. н. могут приводить к состоянию турбулентности плазменных волн.
Если П. н. дополнительно дестабилизируются нелинейными эффектами, то скорость нарастания таких П. н. увеличивается с ростом амплитуды возмущения (до нек-рого предела) — это т. н. в з р ы в н ы е неустойчивости, примеры к-рых встречаются в задачах о нескольких взаимодействующих волнах.
Прогресс в изучении П. н. в значительной степени был связан с работами по проблеме управляемого термоядерного синтеза, в результате чего удалось реализовать практически устойчивые конфпгурацин горячей плазмы в магн. поле (см. Токамак).
П. н. анизотропного типа обнаружены в магнитосфере Земли. Они играют важную роль в динамике радиационных поясов, ч-цы к-рых представляют собой анизотропную в магн. поле компоненту плазмы.
Пучковые П. н., сопровождающиеся генерацией ленгмюровскпх колебаний, представляют интерес для плазменной электроники, а в проблеме управляемого термоядерного синтеза используются в методах нагрева плазмы, основанных на пнжекции пучков заряженных ч-ц.
П. н. разрывного типа привлекаются для построения моделей пересоединения магн. поля в процессе эволюции конфигурации плазмы в токамаке и в нек-рых задачах астрофизики (пересоединение магн. поля как источник энергии солнечных хромосферных вспышек).
• А р ц и м о в и ч Л. А., С а г д е е в Р. 3., Физика плазмы для физиков, М., 1979;
М и х а й л о в с к и й А. Б., Теория плазменных неустойчивостей, 2 изд., т. 1—2, М., 1975—77.
Р. З. Сагдеев,
ПЛАЗМЕННЫЕ УСКОРИТЕЛИ, устройства для получения потоков плазмы со скоростями 10—103 км/с, что соответствует кинетич. энергии ионов от ~10 эВ до 105—107 эВ. На нижнем пределе энергии П. у. соседствуют с генераторами низкотемпературной плазмы -- плазмотронами, на верхнем — с коллективными ускорителями заряженных ч-ц (см. Коллективные методы ускорения).
Плазменные потоки с большими скоростями можно получить разными способами, напр, воздействием лазерного излучения на тв. тело. Однако доведены до определённого уровня совершенства и получили широкое распространение только те П. у. (рис. 1), в к-рых ускорение и создание плазмы осуществляется за счёт электрич. энергии с помощью электрич. разрядов.
В отличие от ускорителей заряженных ч-ц, в канале П. у. находятся одновременно ч-цы с зарядами обоих знаков — положит. ионы и эл-ны, т. е. не нарушается квазинейтральность плазмы. Это снимает ограничения, связанные с пространственным зарядом (см. также Ленгмюра формула), и позволяет, напр., получать квазистационарные (т. е. длительностью 10 -2—10-3 с) плазменные потоки с эфф. током ионов порядка млн. А при энергии ч-ц ~100 эВ.
Рис. 1. Принципиальная схема плазменного ускорителя.