Вавилова закон
Вид материала | Закон |
- Н. И. Вавилова аналитический отчет, 217.51kb.
- Урок по общей биологии в 11 классе «Дело академика Вавилова», 851.64kb.
- Селекция- одомашнивание, 126.51kb.
- Уважаемые коллеги!, 64.43kb.
- Українське товариство генетиків І селекціонерів ім. М.І. Вавилова, 45.97kb.
- «Саратовский государственный аграрный университет имени Н. И. Вавилова», 377.27kb.
- Саратовский Государственный Аграрный Университет им. Н. И. Вавилова. Кафедра Акушерства, 248.61kb.
- О. Б. Ширяев Институт общей физики ран, 119991, Москва, ул. Вавилова,, 20.28kb.
- Главное управление образования, 70.84kb.
- Издательский дом, 529.99kb.
• М а к-Д о н а л д А., Сверхвысокочастотный пробой в газах, пер. с англ., М., 1969; Г о л а н т В. Е., Сверхвысокочастотные методы исследования плазмы, М., 1968; Г е к к е р И. Р., Взаимодействие сильных электромагнитных полей с плазмой, М., 1978.
А. В. Гуревич,
ВЫСОТА ЗВУКА, качество звука, определяемое человеком субъективно на слух и зависящее в осн. от частоты звука. С ростом частоты В. з. увеличивается (т. е. звук становится «выше»), с уменьшением частоты — понижается. В небольших пределах В. з. изменяется также в зависимости от громкости звука и от его тембра.
ВЯЗКОСТЬ (внутреннее трение), свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно Другой. В. тв. тел обладает рядом специфич. особенностей и рассматривается обычно отдельно (см. Внутреннее трение). Осн. закон вязкого течения был установлен И. Ньютоном (1687):
где F — тангенциальная (касательная) сила, вызывающая сдвиг слоев жидкости (газа) друг относительно друга, S — площадь слоя, по к-рому происходит сдвиг, (v2-v1)/(z2-z1) — градиент скорости течения (быстрота изменения её от слоя к слою), иначе — скорость сдвига (рис. 1).
Рис. 1. Схема однородного сдвига (вязкого течения) слоя жидкости высотой h, заключённого между двумя тв. пластинками, из к-рых нижняя (A) неподвижна, а верхняя (В) под действием тангенциальной силы F движется с пост. скоростью v0; v(z) — зависимость скорости слоя от расстояния z до-неподвижной пластинки.
Коэфф. пропорциональности называется коэфф. динамической вязкости или просто В. Он характеризует сопротивление жидкости (газа) смещению её слоев. Величина =1/) наз. текучестью.
Согласно ф-ле (1), В. численно равна тангенциальной силе, приходящейся на ед. площади, необходимой для поддержания разности скоростей, равной единице, между двумя параллельными слоями жидкости (газа), расстояние между к-рыми равно единице. В системе СИ ед. динамич. В.— Па•с (в СГС — пуаз). Наряду с динамической часто рассматривают т. н. кинематическую В. v=/ (где — плотность в-ва), к-рая измеряется в м2/с (в СИ; в СГС — в стоксах). В. жидкостей и газов определяют вискозиметрами.
В условиях установившегося ламинарного течения при пост. темп-ре T В. газов и норм. жидкостей (т. н. ньютоновских жидкостей) пост. ве-
99
личина, не зависящая от градиента скорости. Ниже приведены значения В. нек-рых жидкостей и газов при :20°С (в 10-3 Па•с).
Расплавленные металлы имеют В. того же порядка, что и обычные жидкости (рис. 2). Особыми вязкостными св-вами обладает жидкий гелий. При темп-ре 2,172 К он переходит в сверхтекучее состояние, в к-ром В. равна нулю (см. Гелий жидкий, Сверхтекучесть). Молекулярно-кинетич. теория объясняет В. движением и вз-ствием молекул.
Рис. 2. Вязкость нек-рых расплавленных металлов (в сП) в зависимости от темп-ры.
В газах расстояния между молекулами существенно больше радиуса действия мол. сил, поэтому В. газов — следствие хаотич. (теплового) движения молекул, в результате к-рого происходит пост. обмен молекулами между движущимися друг относительно друга слоями газа. Это приводит к переносу от слоя к слою определ. кол-ва движения, в результате чего медленные слои ускоряются, а более быстрые замедляются. Работа внеш. силы F, уравновешивающей вязкое сопротивление и поддерживающей установившееся течение, полностью переходит в теплоту.
В. газа не зависит от его плотности (давления р), т. к. при сжатии газа общее кол-во молекул, переходящих из слоя в слой, увеличивается, но зато каждая молекула менее глубоко проникает в соседний слой и переносит меньшее кол-во движения (закон Максвелла). В. идеальных газов определяется соотношением:
где т — масса молекулы, n — число молекул в ед. объёма, u — ср. скорость молекул и l — длина свободного пробега молекулы. Т. к. u возрастает с повышением Т (несколько возрастает также и l), В. газов увеличивается при нагревании (пропорционально Т). Для очень разрешенных газов понятие В. теряет смысл.
В жидкостях, где расстояние между молекулами много меньше, чем в газах, В. обусловлена в первую очередь межмолекулярным взаимодействием, ограничивающим подвижность молекул. В жидкости молекула может проникнуть в соседний слой лишь при образовании в нём полости, достаточной для перескакивания туда молекулы. На образование полости (на «рыхление» жидкости) расходуется т.н. энергия активации вязкого течения. Энергия активации уменьшается с ростом Т и понижением р. В этом состоит одна из причин резкого снижения В. жидкостей с повышением Т и роста её при высоких р. При повышении р до неск. тыс. атм. увеличивается в десятки и сотни раз. Строгой теории В. жидкостей ещё нет, на практике широко применяют ряд эмпирич. и полуэмпирич. ф-л, достаточно хорошо отражающих зависимость В. отд. классов жидкостей и р-ров от T, р и хим. состава.
В. жидкости зависит от хим. структуры молекул. В. сходных хим. соединений (насыщ. углеводороды, спирты, органич. к-ты и т. д.) возрастает
с возрастанием мол. массы. Высокая В. смазочных масел объясняется наличием циклич. молекул. Смесь не реагирующих друг с другом жидкостей с различными В. имеет ср. значение В. Если же при смешивании образуется новое хим. соединение, то В. смеси может быть в десятки раз больше, чем В. исходных жидкостей (на измерении В. жидких в-в основан один из методов физ.-хим. анализа).
Возникновение в дисперсных системах или р-рах полимеров пространств. структур, образуемых сцеплением ч-ц или макромолекул, вызывает резкое повышение В. При течении «структурированной» жидкости работа внеш. силы затрачивается не только на преодоление истинной (ньютоновской) В., но и на разрушение структуры.
Для нормальных вязких жидкостей кол-во жидкости Q, протекающей в ед. времени через капилляр, прямо пропорционально р .{см. Пуазёйля закон).
• Г а т ч е к Э., Вязкость жидкостей, пер. с англ., 2 изд., М.— Л., 1935; Френкель Я. И., Кинетическая теория жидкостей, М.— Л., 1945; Ф у к с Г. И., Вязкость и пластичность нефтепродуктов, М., 1956; Голубев И. Ф., Вязкость газов и газовых смесей, М., 1959.
ВЯЗКОУПРУГОСТЬ в механике, свойство в-в в тв. состоянии (полимеров, пластмасс, тв. топлив и др.) быть как упругими, так и вязкими. При В. напряжения и деформации зависят от истории протекания процесса деформирования и характеризуются рассеянием энергии на замкнутом цикле деформации (нагружения) и постепенным исчезновением деформации при полном снятии нагрузок; при этом чётко выражены ползучесть материалов и релаксация напряжений. Напр., величина удлинения цилиндрич. образца при заданном значении растягивающей силы зависит от скорости, с к-рой достигнуто это значение силы. При полной нагрузке в образце обнаруживается мгновенная «остаточная» деформация, к-рая с течением времени самопроизвольно стремится к нулю. Цикл растяжение — разгрузка требует необратимой затраты работы. Однако при очень медленном процессе рассеяние энергии очень мало. Хар-ки В. существенно зависят
от темп-ры. В. С. Ленский.