Вавилова закон
Вид материала | Закон |
- Н. И. Вавилова аналитический отчет, 217.51kb.
- Урок по общей биологии в 11 классе «Дело академика Вавилова», 851.64kb.
- Селекция- одомашнивание, 126.51kb.
- Уважаемые коллеги!, 64.43kb.
- Українське товариство генетиків І селекціонерів ім. М.І. Вавилова, 45.97kb.
- «Саратовский государственный аграрный университет имени Н. И. Вавилова», 377.27kb.
- Саратовский Государственный Аграрный Университет им. Н. И. Вавилова. Кафедра Акушерства, 248.61kb.
- О. Б. Ширяев Институт общей физики ран, 119991, Москва, ул. Вавилова,, 20.28kb.
- Главное управление образования, 70.84kb.
- Издательский дом, 529.99kb.
спектроскопия коротковолновой УФ области и мягкого рентгеновского излучения (от 2•102 до 0,4—0,6 нм). В этой, т. н. вакуумной, области спектра воздух обладает сильным поглощением, и для исследования спектров в ней применяют вакуумные спектральные приборы, оптич. части и приёмник которых помещены в вакуумированную (до 10-5 мм рт. ст.) камеру или камеру, наполненную инертным газом.
Спектры, наблюдаемые в b. c., обусловлены электронными квантовыми переходами в одно- и многократно ионизов. атомах, а также в нек-рых молекулах. В b. с. изучают спектры испускания и поглощения для получения информации об уровнях энергии ионов и молекул, для систематики спектров. Методы В. с. используют для изучения процессов в высокотемпературной плазме. Исследование с помощью методов В. с. многозарядных ионов имеет большое значение для расшифровки спектров звёзд, туманностей и др. космических объектов.
63
Спектр. приборы и методы b.c. обладают рядом специфич. особенностей. Не существует оптич. материалов, прозрачных во всей вакуумной области, поэтому, напр., приборы с призмами и линзами из кристаллов LiF и CaF2 применяются лишь до длин волн 1,1•102 и 1,25•102 нм. В более KB области в кач-ве оптич. элементов применяются дифракц. решётки (в т. ч. кристаллы, напр. слюда).
Для фотографирования спектров в В. с. применяют т. н. шумановские фотопластинки с большим содержанием бромистого серебра и очень малым содержанием желатины (желатина фотоэмульсии обычных пластинок обладает сильным поглощением в вакуумной области). Применяют также сенсибилизиров. фотопластинки. В кач-ве приёмников в В. с. используются и счётчики ионизирующих излучений.
Источником излучения в В. с. обычно служит высоковольтная вакуумная, или «горячая», искра, получаемая при напряжении св. 5•104 В в искровом промежутке ок. 1 мм.
• См. лит. при ст. Ультрафиолетовая спектроскопия. Рентгеновская спектроскопия.
ВАКУУМНЫЙ НАСОС, устройство для удаления газов и паров из замкнутого объёма с целью получения вакуума. В. н. делятся на проточные, к-рые удаляют газ из откачиваемого объёма наружу, и сорбционные, связывающие газ внутри насоса. Существуют также спец. имплантационные, палладиевые и каталитич. В. н. для откачки водорода. Осн. параметры В. н.: 1) предельное остаточное давление рост; 2) быстрота откачки S — объём газа, откачиваемый в ед. времени при определ. впускном давлении
Рис. 1. Области действия разл. типов вакуумных насосов: 1 — водокольцевых; 2 — поршневых; 3 — паро-масляных бустерных; 4 — механических бустерных; 5 — диффузионных; 6 — сорбционных.
3) производительность Q — кол-во газа (помимо паров рабочей жидкости), удаляемое В. н. в ед. времени при определённом pвп(Q=Sрвп); 4) наибольшее давление запуска рзап, при к-ром В. н. может начать работать; 5) наибольшее выпускное давление pмакс, при к-ром В. н. ещё может осуществлять откачку. В. н. бывают форвакуумные (для создания в системе низкого и среднего вакуума при рзап=760 мм рт. ст.) и высоковакуумные, создающие высокий и
сверхвысокий вакуум, иногда между ними ставят промежуточный (бустерный) В. н. (рис. 1).
По принципу действия проточные В. н. подразделяются на механические, струйные (эжекторные и пароструйные), молекулярные (турбомолекулярные) и ионные. Механические В. н.— форвакуумные, они основаны на всасывании откачиваемого газа при периодич. увеличении объёма рабочей камеры и выталкивании газа на выход при уменьшении этого объёма и сжатии газа до давлений, достаточных для открывания выпускных клапанов.
Рис. 2. Поршневой насос: V0 — откачиваемый объём; П — поршень.
Рис. 3. Вращательный водокольцевой насос.
Механич. В. н. бывают поршневые (рис. 2) и вращательные. Во вращательных водокольцевых В. н. (рис. 3) вода центробежной силой прижимается к стенкам корпуса, образуя водяное кольцо 7 и рабочую камеру 2 (свободную от воды). Газ откачивается в результате изменения объёма рабочей камеры между лопатками ротора. Эти насосы могут откачивать смесь газа с парами воды, запылённые газы, кислород и др. взрывоопасные газы.
Рис. 4. Многопластинчатый насос.
Многопластинчатые В. н. (рис. 4) также содержат эксцентрично расположенный ротор, в прорези к-рого вставлены пластины, прижимаемые центробежной силой к
внутр. поверхности корпуса. При этом образуются рабочие ячейки с изменяющимся объёмом. У наиболее распространённых вращат. В. н. (рис. 5) — насосах Геде, внутр. объём заполнен маслом, к-рое служит смазкой и препятствует натеканию воздуха в область низкого давления за счёт образования плёнки между вращающимися и неподвижными частями. Конденсация или растворение газов и па-
Рис. 5. Вращательные масляные насосы: а — пластинчато-роторный; б — пластинчато-статорный; в — плунжерный; 1 — статор; 2 — ротор; 3 — разделительная пластина; 4 — пружина; 5 — выпускной клапан; 6 — рычаг; 7 — плунжер; 8 — золотник.
ров в масле ухудшает параметры В. н. Это предотвращается напуском в рабочую камеру В. н. (после отделения её от впускного отверстия) атм. воздуха в таком кол-ве, чтобы к моменту выхлопа парц. давление паров не достигало давления насыщения.
Рис. 6. Двухроторный насос (насос Рутса).
Действие двухроторных В. н. (насоса Рутса) основано на встречном вращении двух роторов (рис. 6) (предварит. разрежение 5—1 мм рт. ст.).
В струйных В.н. откачиваемый газ всасывается струёй жидкости
64
или пара. Различают эжекторные (вихревые) и пароструйные В. н. В эжекторных В. н. газ увлекается турбулентной струёй жидкости (воды) или пара (воды или ртути), истекающей со сверхзвук. скоростью из сопла эжектора (рис. 7) за счёт турбулентного перемешивания или вязкостного трения граничных слоев струи и откачиваемого газа в камере смешения. Парогазовая смесь из камеры смешения поступает в расширяющийся диффузор, где скорость потока уменьшается, а статич. давление становится значительно выше, чем давление всасывания.
Рис. 7. Пароструйный насос.
В вихревых В. н. используется разрежение, развивающееся вдоль оси вихревого потока, создаваемого сжатым воздухом или перегретым паром.
В пароструйных В. н.— насосах Ленгмюра (рис. 8) струя пара 2 (масло, Hg), истекая с большой скоростью
Рис. 8. Насос Ленгмюра.
из сопла 1, захватывает откачиваемый газ, увлекает его к охлаждаемым стенкам рабочей камеры 3, где пар конденсируется. Конденсат по сливной трубе 4 возвращается в кипятильник 5. Газ, увлекаемый струёй к стенкам
камеры, сжимается и выбрасывается к форвакуумному насосу. Захват газа (в диапазоне р~10-1—10-2 мм рт. ст.) происходит за счёт вязкостного трения между поверхностными слоями струи и прилегающими слоями газа; при р<10-3 мм рт. ст.— за счёт диффузии газа в струю и конвективного переноса молекул газа струёй в сторону форвакуума. При этом часть молекул откачиваемого газа, сталкиваясь с движущимися навстречу более тяжёлыми (рассеянными из струи) молекулами пара, отражается обратно. Часть газа, попавшего в струю, оказывается растворённой в конденсате и вместе с ним попадает в кипятильник, откуда затем выносится с парами через сопло. Этот процесс ограничивает получаемое рост. Для очистки конденсата от растворённого в нём газа применяется фракционирование рабочей жидкости внутри насоса. Хар-ки пароструйных В. н. зависят как от св-в рабочей жидкости, так и от массы молекул и откачиваемого газа. В составе остаточных газов, помимо паров Н2O, СО, СO2 и О2, есть множество углеводородных соединений и радикалов с массовым числом до 250 или пары Hg. Применяя в этих В. н. ловушки, удаляют углеводороды и пары Hg, что позволяет получить более низкое pост. Пароструйные В. н. делятся на бустерные (вязкостное трение и диффузия) и диффузионные (молекулярный режим).
В турбомолекулярных В. н. молекулы откачиваемого газа увлекаются быстро вращающимся ротором (скорость к-рого сравнима со скоростью теплового движения молекул), улавливаются и удаляются из откачиваемого объёма. Перепад давления между входом в насос и выходом из него пропорц. скорости и длине движущейся поверхности, соприкасающейся с потоком газа, и мол. весу газа. Такой насос напоминает горизонтальный (рис. 9) или вертикальный осевой многоступенчатый компрессор. Роторные и статорные диски такого насоса имеют радиальные косые прорези, боковые стенки к-рых наклонены относительно плоскости диска под углом 15—90°, причём прорези роторных дисков зеркальны относительно прорезей статорных дисков. При быстроте вращения ротора 6 600— 90 000 об/мин молекулы газа получают дополнит. скорость и увлекаются в каналы, образуемые прорезями в дисках, в направлении откачки. Осн. остаточный газ — Н2; есть небольшое кол-во СО, N2 и СO2; тяжёлые углеводородные соединения не обнаруживаются.
В сорбционных В.н. газ обычно остаётся внутри В.н. в связанном виде на сорбирующих поверхностях или в подповерхностных слоях; S пропорц. площади сорбирующей поверхности; pост зависит от процессов десорбции. Сорбц. В. н. подразделяются на адсорбционные, сорбционные с термич. распылением (геттерные, сублимационные), сорбционные с нераспыляемым геттером (ленточные), сорбционно-ионные (геттерно-ионные, ГИН), магниторазрядные (насос Пеннинга, ионно-распылительный) и криогенные. Возможны комбинации сорбционных геттерных В. н.
В адсорбционных В.н. связывание газа происходит на поверхностях пористых материалов (цеолит, реже активный уголь, силикагель) при темп-ре окружающей среды или пониженной (113—77 К).
Используются они как самостоятельные с pост~10-9 мм рт. ст. (10-7 Па) или как форвакуумные насосы с рост от 60 до 10-4 мм рт. ст. (до 10-2 Па).
В сорбционных испарительных (геттерных) В. н. поглощающая поверхность создаётся напылением химически активных металлов (Ва, Ti, Zr, Та, Mo и др.). Образующиеся плёнки поглощают большинство газов, присутствующих в вакуумных системах (O2, СO, СО2, пары Н2O), за счёт образования хим. соединений, хемосорбции (Н2) и растворения. Инертные газы и углеводороды практически не поглощаются, их удаляют вспомогательным пароструйным В. н. или ионной откачкой. Но полностью освободиться от углеводородов (напр., от СН4) не удаётся, они синтезируются на поверхности плёнки поглотителя, играющей роль катализатора. Это не позволяет получить рост меньше 10-9—10-11 мм рт. ст. Однако при напылении Ti на охлаждаемые (ниже 77 К) поверхности не только снижается кол-во Н2 и др. газов, но и прекращается образование СН4, что позволяет получить pост~10-11—10-13 мм рт. ст. Такие насосы требуют pзап~10-4 мм рт. ст. и в сочетании с диффузионным или магниторазрядным В. н. создают сверхвысокий вакуум при S до 106 л/с.
В сорбционных нераспыляемых (ленточных) В. н. поглощение осуществляется за счёт хемосорбции плёнкой высокопористых сплавов активных металлов и композитных материалов (напр., Zr+Al), наносимой в виде мелкодисперсного порошка на металлич. и диэлектрич. подложки. Такой геттер обладает интенсивным
65
диффузионным переносом сорбиров. газов в толщу плёнки, возрастающим с повышением темп-ры. Такие насосы позволяют получить рост~10-11 — 10-13 мм рт. ст. при откачке активных тазов при Sуд до 1 л/с•см2.
В сорбционно-ионных В.н. молекулы газа ионизуются при соударении с эл-нами, эмиттированными накалёнными катодами. В В. н. типа ГИН положит. ионы, ускоренные электрич. полем, внедряются в покрывающий стенки насоса слой конденсированного сорбента и «замуровываются» его свежими слоями (рис. 10).
Рис. 10. Геттерно-ионные насосы ГИН; 1 — центр. анод; 2 — прогреваемый анод; 3 — катоды; 4 — прямоканальные испарители.
В насосах типа «Орбитрон» электрич. поле несимметрично относительно корпуса насоса и катода, и эмиттируемые катодом эл-ны движутся по орбитам достаточно долго, что увеличивает вероятность ионизации. Кроме того, часть эл-нов, траектории к-рых проходят вблизи центрального титанового стержневого анода, попадает на него, разогревая его до темп-ры, достаточной для сублимации Ti.
Рис. 11. Ячейка Пеннинга.
При р<10-6 мм рт. ст. испаряется неск. атомов Ti на одну молекулу откачиваемого газа; S достигает 106 л/с. При р>10-6 мм рт. ст. скорость испарения Ti недостаточна для обеспечения его избытка на поверхности поглощения, и 5 резко падает; рзап~10-4 мм рт. ст.
В магниторазрядных В. н. рабочим элементом явл. газоразрядная ячейка — ячейка Пеннинга, состоящая из «ячеистого» анода (рис. 11), расположенного между катодными пластинами, покрытыми Ti. Ячейка помещена в магн. поле В~900—3000 Гс, перпендикулярное плоскости катодов. При подаче на электроды высокого напряжения (от 3 до 7 кВ) между ними зажигается разряд, эл-ны движутся по сложным спиралям, что увеличивает вероятность ионизации в высоком вакууме (~10-12—10-14 мм рт. ст.). Ускоренные электрич. полем ионы бомбардируют катоды, вызывая катодное распыление; при этом часть ионов внедряется в катоды, а часть — нейтрализуется и, обладая достаточной энергией, отражается от поверхности катода, попадает на анод и «замуровывается» распыляемым материалом катодов. Активные газы откачиваются сорбционным и ионным способами, инертные — ионным, причём часть их «замуровывается» на аноде. Величина разрядного тока в этих насосах пропорц. давлению, S зависит от числа ячеек (каждую ячейку можно рас-
ОСНОВНЫЕ ПАРАМЕТРЫ ВАКУУМНЫХ НАСОСОВ
сматривать как самостоят. насос с S от 0,25 до 1 л/с).
Действие криогенных (конденсационных) В. н. основано на конденсации и адсорбции паров и газов на поверхностях, охлаждаемых до низких темп-р, когда давление насыщ. паров откачиваемого в-ва ниже давления, к-рое необходимо создать в откачиваемом объёме. Криогенный В. н, состоит из: криопанели; защитного экрана, охлаждаемого до темп-р, промежуточных между темп-рой криопанели и стенки корпуса, и служащего для снижения тепловых нагрузок на криопанель от теплового излучения стенок корпуса насоса; системы охлаждения. Для откачки газов, неконденсируемых в насосе, применяют вспомогательный пароструйный насос с ловушкой или сорбционно-ионный насос.
• Дэшман С., Научные основы вакуумной техники, пер. с англ., М., 1964; Пауэр Б. Д., Высоковакуумные откачные устройства, пер. с англ.,М.,1969; Пипко А.И., Основы вакуумной техники, 2 изд., М., 1981; Грошковский Я., Техника высокого вакуума, пер. с польск., М., 1975; III у м с к и й К. П., Вакуумные аппараты и приборы химического машиностроения, 2 изд., М., 1974; Контор Е. И., Геттерные и ионно-геттерные насосы, М., 1977; Васильев Г. А., Магниторазрядные насосы, М., 1970; Минайчев В, Е., Вакуумные крионасосы, М., 1976.
Е. И. Контор.
ВАКУУМНЫЙ ПРОБОЙ, процесс возникновения самостоятельного разряда при высокой разности потенциалов между электродами, находящимися первоначально в таком вакууме, при к-ром длины пробега ч-ц много больше межэлектродного расстояния, так что объёмная ионизация остаточного газа практически отсутствует. Развитие В. п. может начаться с теплового взрыва естественных (или искусственных) микроостриёв на катоде (см. Взрывная электронная эмиссия) за счёт токов автоэлектронной эмиссии. При этом вблизи катода образуется облако плазмы. Бомбардируемый эл-нами плазмы анод разогревается и поставляет в пр-во пары металла, ионизация к-рых приводит к возникновению разряда. Если мощность источника тока достаточно велика, то заключит. стадией В. п. явл. вакуумная дуга. Развитию В. п. могут способствовать диэлектрич. вкрапления и адсорбиров. плёнки на поверхности электродов.
Л. А. Сена.
ВАЛЕНТНАЯ ЗОНА, энергетич. область разрешённых электронных состояний в тв. теле; при абс. нуле темп-ры целиком заполнена валентными эл-нами (см. Зонная теория). Эл-ны В. з. дают вклад в энергию связи кристалла, его диэлектрическую проницаемость, определяют поглощение света в кристалле; в электропроводности и др. процессах переноса эл-ны заполненной В. з. при Т0К участия не принимают. Под влиянием теплового движения (Г0К), а также внеш. воздействий (освещение, облучение эл-нами, введение примесей и т. п.) обычно небольшая часть эл-нов
66
переходит из В. з. в проводимости зону или на примесные уровни в запрещённой зоне. В результате в верх. части В. з. появляется нек-рое число незаполненных электронных состояний (дырок), и эл-ны В. з. получают возможность участвовать в электропроводности.
• См. лит. при ст. Твёрдое тело.
Э. М. Эпштейн.
ВАЛЕНТНОСТЬ (от лат. valentia — сила), способность атомов элементов к образованию химических связей; количественно характеризуется числом. В. можно рассматривать как способность атома отдавать или присоединять определ. число эл-нов внеш. электронных оболочек (валентных эл-нов). В случае ионной связи В.— это число отданных или присоединённых данным атомом эл-нов; в случае ковалентной связи В. равна числу обобществлённых электронных пар. Мн. элементы могут иметь различную В. в зависимости от того, в какие соединения они входят. В этом случае часто пользуются термином «степень окисления», или «окислительное число». Иногда В. явл. понятием условным и не может быть количественно охарактеризована.
• См. лит. при ст. Молекула.
В. Г. Дашевский.
ВАН-ДЕ-ГРААФА ГЕНЕРАТОР, см. в ст. Электростатический генератор.
ВАН-ДЕР-ВААЛЬСА УРАВНЕНИЕ,
одно из первых уравнений состояния реального газа. Предложено в 1873 голл. физиком Я. Д. Ван-дер-Ваальсом (J. D. van der Waals). Для моля газа, имеющего объём V при темп-ре Т и давлении р, имеет вид:
(p+a/V2)(V-b)=RT,
где R — универсальная газовая постоянная, а a и b — эксперим. константы, учитывающие отклонение св-в реального газа от св-в идеального. Так, член a/V2 имеет размерность давления и учитывает притяжение молекул в результате межмолекулярного взаимодействия, а константа b — поправка на собств. объём молекул, учитывающая отталкивание молекул на близких расстояниях. При больших V (а также для разреж. газов) константами а и & можно пренебречь и В. у. переходит в ур-ние состояния идеального газа (см. Клапейрона уравнение).
В. у. явл. приближённым и количественно определяет св-ва реальных газов лишь в области высоких Т и низких р. Однако качественно оно позволяет описывать поведение газа при высоких р, конденсацию газа и критич. состояние.
На рисунке приведены изотермы, рассчитанные по В. у. При низких Т все три корня В. у.— действительные, а выше критич. темп-ры (Тк) остаётся лишь один действит. корень. Это означает, что при Т>ТК в-во может находиться только в одном (газообразном) состоянии, а при Т<ТК — в трёх состояниях (двух стабильных — жидком Vж и газообразном Vг — и одном нестабильном). Точки прямой ас отвечают равновесию жидкости и её насыщ. пара. В условиях равновесия, напр. в состоянии, соответствующем точке b, относит, кол-ва жидкости и пара определяются отношением отрезков вс/ва («правило моментов»). Равновесию фаз при определ. Т соответствует давление насыщ. пара рнп и интервал объёмов отVж до Vr.
Диаграмма состояния в-ва в координатах р — V: t1, Т2, Т3, Тк — изотермы, рассчитанные по ур-нию Ван-дер-Ваальса; К — критич. точка. Линия dKe (спинодаль) очерчивает область неустойчивых состояний.
При более низких р (за областью, где возможно одновременное существование газа и жидкости) изотерма характеризует св-ва газа. Левая, почти вертик. часть изотермы отражает малую сжимаемость жидкости. Участки ad и еc (и аналогичные участки др. изотерм) относятся соотв. к перегретой жидкости и переохлаждённому пару (метастабильные состояния). Участок de физически неосуществим, т. к. здесь происходит увеличение V при увеличении р. Совокупность точек а, а', а" и с, с', с", . . . определяет кривую, наз. бинодалью, к-рая очерчивает область совместного существования газа и жидкости. В критич. точке К параметры Тк, рк и Vк имеют значения, характерные для данного в-ва. Однако если в В. у. ввести относит. величины Т/Тк, р/рк и V/VK, то можно получить т. н. приведённое В. у., к-рое явл. универсальным.