Дослідження розвитку теорії ймовірності

Дипломная работа - Математика и статистика

Другие дипломы по предмету Математика и статистика

е доведена нами пізніше (після введення нерівності Чебишева).

Завжди може трапитися, що, яким би більшим не було n, у даній серії з n випробувань виявиться більше . Але, відповідно до теореми Бернуллі ми можемо затверджувати, що якщо n досить велике і якщо зроблено досить багато серій випробувань по n випробувань у кожній серії, то в гнітючому числі серій нерівність буде виконано.

Бернуллі вважає, що з доведеної теореми випливає те дивне, очевидно, наслідок, що якби спостереження над всіма подіями продовжувати всю вічність (причому ймовірність, нарешті, перейшла б у повну вірогідність), те було б замічене, що все у світі управляється точними відносинами й постійним законом зміни, так, що навіть у речах, найвищою мірою випадкових, ми примушені були б визнати як би деяку необхідність і, скажу я, доля.

А.А. Марков писав, що в цій роботі Бернуллі уперше була опублікована й доведена знаменита …теорема, що поклала початок закону більших чисел…... Пуассон (17811840 р.) у своїй роботі Дослідження про ймовірність судових вироків по карних і цивільних справах займався граничними пропозиціями. У результаті він довів свою знамениту теорему, який дали назву закон більших чисел [1]. Теорема Пуассона формулювалася в такий спосіб.

Теорема.

Якщо виробляється n незалежних випробувань, результатами яких є настання або не настання події A, причому ймовірність настання події в окремих випробуваннях неоднакова, то з імовірністю, як завгодно близької до одиниці (або, інакше кажучи, до вірогідності), можна затверджувати, що частота настання події A буде як завгодно мало відрізнятися від середньої арифметичної ймовірностей настання події в окремих випробуваннях.

Тепер цю теорему записують так:

 

 

Якщо ж імовірність настання події не буде змінюватися від випробування до випробування, то =p, і теорема Пуассона в цьому випадку переходить у теорему Я. Бернуллі, що, таким чином, є часткою случаємо теореми Пуассона.

 

3.3 Нерівність Чебишева. Закон більших чисел у формі Чебишева

 

17.12.1866 р. Чебишев доповів Академії наук свою роботу Про середні величини, що була опублікована в 1867 р. В Математичному збірнику. У цій роботі Чебишев довів одну важливу нерівність, що тепер називається нерівністю Чебишева. За допомогою цієї нерівності Чебишев одержав теорему, з якої як наслідки виходять теореми Бернуллі й Пуассона. На початку роботи Про середні величини Чебишев доводить теорему [1,6].

Теорема.

Якщо математичне очікування величин x, y, z,... суть a, b, c,...,

а математичне очікування квадратів , , ,…суть , , ,…,те ймовірність, що сума x+y+z+... полягає в межах

 

,

,

 

при всякому значенні залишається більше .

Далі Чебишев переходить до наступної теореми.

Якщо ми зобразимо через N число величин x, y, z,…,u,думаючи в доведеній зараз теоремі , розділимо на N як суму x+y+z+…,так і межі її

 

,

,

 

те із цієї теореми одержимо наступну щодо середніх величин.

Теорема.

Якщо математичне очікування величин

x, y, z,…,,,,…суть a, b, c,…,,,,…,те ймовірність, що середнє арифметичне N величин x, y, z,…,від середнього арифметичного математичних очікувань цих величин відрізняється не більше як на при всякому значенні, буде перевершувати .

Це і є знаменита нерівність Чебишева, що у сучасній формі записується в такий спосіб:

 

,

 

де випадкова величина x має кінцеву дисперсію , а -будь-яка відмінна від нуля позитивна величина.

Дійсно, першу теорему Чебишева можна записати так:

 

 

Застосуємо цю теорему до випадкової величини x:

 

.

Але ,

,

, .

 

Нехай , тоді й одержуємо звичну формулу для нерівності Чебишева

 

.

 

Сформулюємо відповідну теорему й доведемо в ній ця нерівність.

Теорема.

Нехай є випадкова величина з математичним очікуванням і дисперсією .

Нерівність Чебишева затверджує, що, яке б не було позитивне число , імовірність того, що величина відхилиться від свого математичного очікування не менше ніж на , обмежена зверху величиною :

 

.

 

Доказ.

1. Нехай величина дискретна, з поруч розподілу

 

Зобразимо можливі значення величини і її математичне очікування у вигляді крапок на числовій осі Ox.

Задамося деяким значенням і обчислимо ймовірність того, що величина відхилиться від свого математичного очікування не менше ніж на : .

Для цього відкладемо від крапки вправо й уліво по відрізку довжиною ; одержимо відрізок . Імовірність є не що інше, як імовірність того, що випадкова крапка потрапить не усередину відрізка , а зовні його (кінці відрізка ми в нього не включаємо): .

Для того щоб знайти цю ймовірність, потрібно підсумувати імовірності всіх тих значень, які лежать поза відрізком . Це ми запишемо в такий спосіб:

, де запис під знаком суми означає, що підсумовування поширюється на всі ті значення , для яких крапки лежать поза відрізком .

З іншого боку, напишемо вираження дисперсії величини по визначенню:

 

.

 

Тому що всі члени суми ненегативні, вона може тільки зменшитися, якщо ми поширимо її не на всі значення , а тільки на деякі, зокрема на ті, які лежать поза відрізком :

 

.

 

Замінимо під знаком суми вираження через . Тому що для всіх членів суми , то від такої заміни сума теж може тільки зменшитися, значить:

&