Дослідження розвитку теорії ймовірності
Дипломная работа - Математика и статистика
Другие дипломы по предмету Математика и статистика
?ення, чим більше близький до більше вилученого при рівному числі проміжних членів.
Доказ.
Відзначається, що коефіцієнти членів рівно віддалених від кінців рівні. Число всіх членів nt+1=nr+ns+1. Найбільший член буде:
M= = .
M можна записати в іншому виді, скориставшись наступною формулою .
M= = .
Найближчий до нього ліворуч член дорівнює
;
праворуч .
Наступний ліворуч ;
праворуч і т.д.
; ;
; , і т.д.
Очевидно, що:
, M-Найбільший член.
Що й було потрібно довести.
Лема 4.
У ступені двочлена з показником nt число n може бути взяте настільки більшим, щоб відношення найбільшого члена M до двох іншим L і , що відстоїть від нього ліворуч і праворуч на n членів, перевершило всяке дане відношення.
Доказ.
M= = ;
L= ;
= .
Для доказу леми необхідно встановити, що
и.
= = =
= .
= = = = .
Але ці відносини будуть нескінченно більшими, коли n покладається нескінченним, тому що тоді зникають числа 1, 2, 3 та ін. у порівнянні з n, і самі числа , , та ін. , , та ін. будуть мати ті ж значення, як і . Після цього відкинувши ці числа й провівши відповідні скорочення на n, одержимо, що
= ; = .
Кількість співмножників у чисельнику й знаменнику дорівнює n. Внаслідок чого ці відносини будуть нескінченними ступенями виражень: і й тому нескінченно більшими.
Таким чином, ми зясували, що в нескінченно високому ступені двочлена відношення найбільшого члена до іншим L і перевершує всяке задане відношення.
и.
Що й було потрібно довести.
Лема 5.
Відношення суми всіх членів від L до до всім іншим зі збільшенням n може бути зроблене більше всякого заданого числа.
Доказ.
M найбільший член розкладання.
Нехай сусідні з ним ліворуч будуть F, G, H,…;
нехай сусідні з L ліворуч будуть P, Q, R,…...
На підставі леми 3 маємо:
< ; < ; < , … або < < < <…...
Тому що по лемі 4, при n нескінченно великому, відношення нескінченно, те тим більше будуть нескінченними відносини , , ,…,і тому відношення також нескінченно, тобто сума членів між найбільшим M і межею L нескінченно більше суми такого ж числа членів за межею L і найбільше до нього близьких. І тому що число всіх членів за межею L перевищує, по лемі 1, не більш ніж в s-1 раз (тобто кінцеве число раз) число членів між цією межею й найбільшим членом M, а самі члени робляться тим менше, ніж далі вони відстоять від межі, по першій частині леми 3, то сума всіх членів між M і L (навіть не вважаючи M) буде нескінченно більше сум всіх членів за межею L. Аналогічне твердження можна довести щодо членів між M і . Обоє ці твердження й доводять лему.
Що й було потрібно довести.
Головна пропозиція.
Нехай число добрих нагод ставиться до числа несприятливих точно або приблизно, як r до s, або до числа всіх випадків, як r до r+s або r до t, це відношення полягає в межах і . Потрібно довести, що можна взяти стільки досвідів, щоб у яке завгодно дане число раз (c раз) було ймовірніше, що число сприятливих спостережень потрапить у ці межі, а не поза ними, тобто відношення числа сприятливих спостережень до числа всіх буде не більш ніж і не менш .
Доказ.
Нехай число необхідних спостережень буде nt. Імовірність того що всі спостереження будуть сприятливі, дорівнює
,
що все крім одного
,
крім двох
і т.д.
А це є члени розкладання (r+s) у ступені nt (ділені на ), які досліджувалися в минулих лемах. Всі подальші висновки ґрунтуються на доведених лемах. Число випадків з ns несприятливими спостереженнями й nr сприятливими дає член M. Число випадків, при яких буде nr+n або nr-n сприятливих спостережень, виражається членами L і , що відстоять на n членів від M. Отже, число випадків, для яких сприятливих спостережень виявиться не більше nr+n і не менш nr-n, буде виражатися сумою членів, укладених між L і . Загальне ж число випадків, для яких сприятливих спостережень буде або більше nr+n або менше nr-n, виражається сумою членів, що стоять лівіше L і правіше .
Тому що ступінь двочлена може бути взята настільки більша, щоб сума членів, укладених між обома межами L і перевершувала більш ніж в c раз суму всіх інших із цих меж вихідних, по лемах 4-й і 5-й, те, отже, можна взяти настільки велика кількість спостережень, щоб число випадків, при яких відношення числа сприятливих спостережень до числа всіх виявляється увязненим у межі й або й , перевищувало більш ніж в c раз число інших випадків, тобто зробилося більш ніж в c раз імовірніше, що відношення числа сприятливих спостережень до числа всіх полягає в межах і , а не поза цими межами.
Що й було потрібно довести.
Для порівняння дамо сучасне формулювання теореми Бернуллі.
Теорема Бернуллі.
Якщо ймовірність настання події A у послідовності незалежних випробувань постійна й дорівнює p, те, яке б не було позитивне число , з імовірністю як завгодно близької до одиниці, можна затверджувати, що при досить великій кількості випробувань n різниця по абсолютній величині виявиться меншої, чим :
,
де -будь-яке мале число.
Ця теорема буд