Дослідження розвитку теорії ймовірності

Дипломная работа - Математика и статистика

Другие дипломы по предмету Математика и статистика

випадків.

Ми бачимо, що визначення математичного очікування дискретної випадкової величини остаточно сформувалося до середини XVIII в. і активно використовувалося при рішенні різних задач. Однак поняття математичного очікування іноді вважали недостатнім. Тому були спроби ввести поняття морального очікування (моральне очікування), що повязане з вигодою, що залежить від особистих умов. Незважаючи на те, що розробкою поняття морального очікування займалися багато вчених (Д. Бернуллі, Ж.Л. Бюффон, В.Я. Буняковський, Н.Е. Зернов, Лаплас, Пуассон, Лакруа), це поняття не закріпилося в науці.

Можна зробити висновок, що поняття математичного очікування перебороло складний шлях щоб стати одним з головних і основних понять у теорії ймовірностей.

 

3. Закон більших чисел

 

3.1 Первісне осмислення статистичної закономірності

 

Закон більших чисел займає одне із центральних місць у теорії ймовірностей. Донедавна проблема закону більших чисел не була остаточно вирішена. Розглянемо динаміку розвитку цього закону.

Одним з перших до розуміння статистичної закономірності й закону більших чисел підійшов Кардано. Щодо свого висновку про 6 можливості одержати однакові числа окулярів на двох костях і 30 можливостях - різні, він пише: Ціла серія ігор (36 кидків) не дає відхилення, хоча в одній грі це може трапитися..., при великій кількості ігор виявляється, що дійсність досить наближається до цього припущення [1].

Тут Кардано затверджує, що при малій кількості спостережень частота може відхилятися досить сильно від частки, або, інакше кажучи, від імовірності; при великій кількості випробувань це відхилення буде незначно.

 

3.2 Поява теорем Бернуллі й Пуассона - найпростіших форм закону більших чисел

 

Я. Бернуллі писав: …І що не дано вивести a priori те, принаймні, можна одержати a posteriori, тобто з багаторазового спостереження результатів....

Бернуллі затверджує, що якщо в азартних іграх завжди можна порахувати число випадків, а самі випадки зустрічаються однаково легко, те в інших явищах у природі й суспільстві ні те ні інше не має.

Все йдеться до того, щоб для правильного складання пропозицій про яку-небудь річ були точно обчислені як числа випадків, так і було б визначене наскільки одні випадки можуть легше зустрітися, чим інші.... Але це зовсім неможливо зробити для більшості явищ. Однак Бернуллі знайшов вихід зі сформованої ситуації. Він затверджує, що при збільшенні числа випробувань, частота появи якої-небудь події буде мало відрізнятися від імовірності появи цієї події. І чим більше число випробувань, тим менше ця відмінність. Варто помітити, що відношення між числами випадків, які ми бажаємо визначити досвідом, розуміється не в змісті точного відношення..., але до відомого ступеня наближеного, тобто увязненого у двох границях, які можна взяти як завгодно тісними.

У допомогу доказу своєї теореми Бернуллі доводить ряд лем [1].

Лема 1.

Розглядаються два ряди

 

0, 1, 2, ..., r - 1, r, r + 1, ..., r + s;

0, 1, 2, …, nr n, …, nr, …, nr + n, …, nr + ns

 

і затверджується, що зі збільшенням n росте кількість членів між nr і nr + n; nr і nr n; nr + n і nr + ns; nr і 0. Крім того, як би велико не було n, число членів після nr + n не буде перевищувати більш ніж в s 1 раз число членів, укладених між nr і nr + n або між nr і nr n, а також число членів до nr n не буде перевищувати більш ніж в r 1 раз число членів між тими ж числами.

Доказ.

Знайдемо кількість членів між зазначеними в лемі членами розглянутих рядів. Для цього введемо позначення:

-число членів між nr і nr+n;

-число членів між nr і nr-n;

-число членів між nr+n і nr+ns;

-число членів між nr і 0;

-число членів після nr+n;

-число членів до nr-n.

 

;

;

;

.

 

Очевидно, що зі збільшенням n (тобто при ) , , , будуть необмежено зростати.

Знайдемо число членів після nr+n ( ), мабуть, що = = .

Очевидно, що = = , тобто число членів після nr+n не перевищує більш ніж в s-1 раз число членів увязнених між nr і nr+n або між nr і nr-n, для будь-якого n.

Знайдемо число членів до nr-n ( ), мабуть, що , а значить = = , тобто число членів до nr-n не перевищує більш ніж в r-1 раз число членів увязнених між nr і nr+n або між nr і nr-n, для будь-якого n.

Що й було потрібно довести.

Лема 2.

Усякий цілий ступінь якого-небудь двочлена r + s виражається числом членів, на одиницю більшим числа одиниць у показнику ступеня.

Доказ.

Розглянемо , де x (x ціле число)

 

= .

 

Складемо ряд зі ступенів одночлена s (або r)

0,1,2,..., x-2, x-1, x. Число членів у цьому ряді дорівнює x+1.

Т. о. усякий цілий ступінь двочлена r + s виражається числом членів, на одиницю більшим числа одиниць у показнику ступеня. Що й було потрібно довести.

Лема 3.

У будь-якому ступені двочлена r + s, принаймні в t=r+s або nt=nr+ns, деякий член M буде найбільшим, якщо числа попередніх йому й наступних за ним членів перебувають у відношенні s до r або, що те ж, якщо в цьому члені показники букв r і s перебувають відносно самих кількостей r і s; більше близький до нього член з тієї й іншої сторони більше вилученого з тієї ж сторони; але той же член M має до більше близького менше відно?/p>