Дослідження розвитку теорії ймовірності

Дипломная работа - Математика и статистика

Другие дипломы по предмету Математика и статистика

?держати 1, 2 або 3, то ти знаєш, що для цього є 27 шансів, а тому що вся серія складається з 36, то залишається 9 кидань, у яких ці числа окулярів не випадуть; таким чином, ці числа будуть перебувати в потрійному відношенні. Отже, при чотирьох киданнях три випадання будуть сприятливі 1, 2 або 3, і тільки один раз не вийде жодного із трьох зазначених чисел окулярів. Якщо той, хто чекає випадання одного із трьох зазначених чисел окулярів, поставить три асів (давньоримські мідні монети), а другий один, то спочатку перший виграє тричі й одержить три асів, а потім другий виграє один раз і одержить три асів; таким чином, у загальному підсумку чотирьох кидань шанси їх завжди зрівняються. Стало бути, такі умови розрахунку в грі - правильні; якщо ж другий з них поставить більше, те йому доведеться боротися в грі на нерівних умовах і зі збитком для себе; а якщо він поставить менше, те з баришем. Однак Кардано розуміє, що ці твердження справедливі тільки тоді, коли гра буде тривати досить довго [1].

 

2.2 Введення поняття математичного очікування і його подальший розвиток

 

Звернемося до роботи Х. Гюйгенса Про розрахунок в азартних іграх. Книга складається із введення й 14 пропозицій. Розглянемо перші три пропозиції [1].

Пропозиція 1: Якщо я маю рівні шанси одержання a або b, те це мені коштує .

Пропозиція 2: Якщо я маю рівні шанси на одержання a, b або c, те це мені коштує стільки ж, як якби я мав .

Пропозиція 3: Якщо число випадків, у яких виходить сума a, дорівнює p і число випадків, у яких виходить сума b, дорівнює q, і всі випадки однаково легко можуть відбутися, то вартість мого очікування дорівнює .

По суті Гюйгенс тут так визначає математичне очікування. Він фактично вперше вводить поняття математичного очікування й використовує його. Математичне очікування є узагальненням поняття середньої арифметичної. Середня арифметична широко застосовувалася в торгівлі й промисловості для визначення середніх цін, середнього прибутку й т.п.

Термінологія Гюйгенса в теорії ймовірностей несе на собі відбиток комерційної термінології. Він уважає, що математичне очікування - це ціна шансу на виграш у необразливій грі й доходить висновку, що справедлива ціна - є середня ціна. Він обчислює за яку справедливу ціну я міг би поступитися своє місце в грі іншому. Сам Гюйгенс не називає математичне очікування очікуванням, воно в нього фігурує як вартість шансу. Уперше термін очікування зявляється в перекладі роботи Гюйгенса Францем ван Схоутеном.

Робота Х. Гюйгенса дуже вплинула на Я. Бернуллі. До пропозицій 1, 2 і 3 Гюйгенса Бернуллі робить велика примітка.

Автор цього трактату викладає ...у цьому й двох наступних пропозиціях основний принцип мистецтва припущень. Тому що дуже важливо, щоб цей принцип був добре зрозумілий, то я спробую довести його за допомогою вирахувань більше звичайних і більше доступних всім, виходячи винятково з тієї аксіоми, або визначення, що кожний повинен очікувати або припускає очікувати стільки скільки він неминуче одержить.

Слово очікування тут не повинне розумітися в його звичайному змісті, відповідно до якого очікувати або сподіватися ставиться до події найбільш сприятливому, хоча може відбутися найгірше для нас; потрібно розуміти під цим словом надію, що ми маємо на одержання кращого, зменшеним страхом гіршого. Так що вартість нашого очікування завжди означає щось середнє між кращим, на що ми сподіваємося, і гіршим, чого ми боїмося...

Після розгляду пропозиції 3 Бернуллі відзначає наступне: З розгляду ...очевидно, що є велика подібність із правилом, називаним в арифметиці правилом товариства, що складається в знаходженні ціни суміші, складеної з певних кількостей різних речей з різною ціною. Або, скоріше, що обчислення є абсолютно однаковими. Так, подібно тому, як сума добутків кількостей речовин, що змішуються, на їхні відповідні ціни, розділена на суму речовин, дає шукану ціну, що завжди перебуває між крайніми цінами, також сума добутків випадків на відповідно принесені ними вигоди, розділена на число всіх випадків, указує вартість очікування, що внаслідок цього завжди є середньою між найбільшою й найменшою із цих вигід.

Це досить гарне пояснення математичного очікування і його звязку зі зваженої середньої арифметичної [1].

У середині й у другій половині XVIII в. багато вчених займалися питаннями повязаними з теорією ймовірностей. Насамперед, це ставиться до математиків, з яких можна виділити Д. Бернуллі (17001778 р.). Найбільш відомою роботою Д. Бернуллі по теорії ймовірностей є Досвід нової теорії міри випадку (1738 р.), у якій він уводить поняття морального очікування [2]. Однак, незважаючи на те, що надалі багато вчених розробляли це поняття воно не прижилося в теорії ймовірностей. Д. Бернуллі вводить правило підрахунку математичного очікування, що він називає основним правилом: Значення очікуваної величини виходить шляхом множення значень окремих очікуваних величин на число випадків, у яких вони можуть зявитися, і наступного ділення суми добутків на суму всіх випадків, при цьому потрібно, щоб розглядалися ті випадки, які є рівно можливими між собою [1, 2]. Це правило повністю відповідає визначенню математичного очікування дискретної випадкової величини.

 

.

 

Тут - значення окремої i-ой очікуваної величини,

- число випадків у які може зявитися i-а очікувана величина,

n-число всіх