Возможности использования ИКТ в изучении линий второго порядка в школьном курсе алгебры

Дипломная работа - Педагогика

Другие дипломы по предмету Педагогика

ажнения, при решении которых требуется умение мыслить и анализировать. В основном в каждой части В (в конце) содержится задача - исследование. При этом формулировки упражнений интересны, разнообразны, и местами прослеживается непосредственная связь с другими предметами (физика, геометрия). Каждый параграф заканчивается контрольными вопросвми и заданиями. Учебники содержат не только разнообразные упражнения, но и дополнительный материал в рублике Для тех, кому интересно, Вопросы для повторения, Задачи для самопроверки

Особенности изучения линий второго порядка в школьном курсе алгебры

Изучение линий второго порядка в школьном курсе алгебры начинается с 8-9 класса. Где данной теме уделяется 16 часов. (приложение 2.)

Линии второго порядка представлены квадратичной и дробно - рациональной функциями. Дробно - рациональная функция изучается в 8 классе, в течении 3 часов. Понятие функции учащиеся усваивают, начиная с 7 класса средней школы; идет постепенное изучение свойств функций и функциональных зависимостей. Рассматриваются различные классы функций: начиная с простейших линейных функций и их графиков, затем следуют квадратичные функции, функции обратной пропорциональности и дробно-линейные функции.

В данной работе подробно рассмотрим особенности изучения учащимися квадратичной функции и функции выражающей обратно пропорциональную зависимость.

К изучению класса квадратичных функций учащиеся знают, как строить график линейной функции:

метод загущения точек на графике;

построение по двум точкам;

Однако для построения параболы нужны новые приёмы:

приём, основанный на преобразованиях, приводящих функцию к виду , и использования геометрических преобразований для построения графика произвольной квадратичной функции из параболы стандартного вида - графика функции ;

построение по характеристическим точкам и с учетом свойств симметрии. При построении графика функции по характеристическим точкам и с учетом свойств симметрии необходимо использовать следующий алгоритм:

Выяснить направление ветвей. Если , то ветви параболы направлены вверх, если , то ветви направлены вниз.

Вычислить координаты вершины параболы по формулам и .

Найти нули функции и построить на оси абсцисс соответствующие точки параболы.

Вычисляем координаты точки пересечения параболы с осью ординат: и строим точку, симметричную ей относительно оси параболы.

Через построенные точки проводим параболу.

Квадратичная функция вводится и изучается в тесной связи квадратичными уравнениями и неравенствами, что дает возможность активно использовать график функции в их решении.

На подготовительном этапе к изучению линий второго порядка, рассматривается функция . По своим свойствам, прежде всего, эта функция немонотонна, в отличие от линейной функции. Чтобы подчеркнуть указанное отличие, полезно предложить учащимся следующее задание: Функция задана формулой на промежутке . Найти множество значений этой функции.

Перенося свойство монотонности с класса линейных функций на , учащиеся могут допустить ошибку, именно поэтому следует рассмотреть график функции и его построение:

методом загущения точек;

по характеристическим точкам.

Другое отличие состоит в том, что характер изменения значений функции неравномерный: на одних участках она растет быстрее, на других - медленнее. Эта особенность выявляется при построении графика, причем целесообразно рассмотреть два графика: один - в крупном масштабе на промежутке , другой-в мелком масштабе на промежутке, например, . Построение можно вести описанным выше методом загущения. Важно отметить свойство параболы - симметричность относительно оси абсцисс. В дальнейшем это свойство приведет к рассмотрению класса четных функций, причем именно функция будет ведущим примером функции этого класса.

Изучение класса квадратичных функций начинается с изучения функций вида ; при этом выясняется геометрический смысл коэффициента а, путем построения и сравнения нескольких графиков функции в одной системе координат: .После чего рассматриваются свойства функции при , вводится понятие области определения. При этом сначала рассуждения проводятся с использованием геометрической терминологии и с опорой на график, а затем те же самые факты формулируются на алгебраическом языке. Таким образом, формирование таких понятий, как наименьшее (или наибольшее) значение квадратичной функции, неограниченность сверху (или снизу) происходит с опорой на наглядные представления. Школьники должны знать и о симметрии графиков функции относительно оси OX при противоположных значениях a, и об изменении крутизны параболы при изменении a.

Далее вводится более широкий класс функций, имеющий вид . И здесь также коэффициент получает ясную геометрическую интерпретацию. При этом справедливо следующее утверждение: чтобы построить график функции , где c- заданное положительное число, надо сдвинуть график функции вдоль оси OY на c единиц масштаба вверх; чтобы построить график функции , где c- заданное положительное число, надо сдвинуть график функции вдоль оси OY на c единиц масштаба вниз.

Пример 1. Задан график функции. Построить на этом чертеже график функции .

Заметим, что при заданном значении аргумента Х0 значения функции на одно и то же число, равное 1, больше значений функции. Поэтому для построения соответствующей точки второй функции на графике достаточно поднять н?/p>