Возможности использования ИКТ в изучении линий второго порядка в школьном курсе алгебры

Дипломная работа - Педагогика

Другие дипломы по предмету Педагогика

(11)

 

Чтобы проанализировать уравнение кривой (9), рассмотрим три

случая:

) (эллиптический случай);

) (гиперболический случай);

) (параболический случай).

Подробнее рассмотрим эллиптический случай. Из следует, что , то есть знаки совпадают. Пусть A? > 0, C? > 0. Выделим полные квадраты при неизвестных x?, y?, получим:

 

Дополним члены, содержащие x и y,до полного квадрата:

 

, (12)

где

 

Положим , тогда уравнение (12) примет вид: . (13)

Пусть . Разделим обе части уравнения (13) на , получим:

 

(14)

 

Так как и , то предположим, что . (15)

Из (14) и (15) следует, что мы получили каноническое уравнение эллипса

Пусть F? > 0, тогда в уравнении (13) слева стоит неотрицательное число, а справа - отрицательное, поэтому точек, удовлетворяющих данному уравнению, не существует.

Пусть F? = 0. Тогда уравнению (13) удовлетворяет только одна точка , то есть точка с координатами

Рассмотрим гиперболический случай. Из следует, что , то есть числа имеют разные знаки. Выполняя аналогичные преобразования, как и для эллиптического случая, получим уравнение кривой:

Предположим, что . Отсюда:

 

(16)

 

Так как и разных знаков, следовательно, одна из скобок больше нуля, другая скобка меньше нуля. Пусть (17)

тогда мы получаем каноническое уравнение гиперболы:

 

 

При уравнение принимает вид: (18)

Пусть , тогда и уравнение (18) примет вид: откуда Таким образом, получили уравнения двух пересекающихся прямых.

Рассмотрим параболический случай. Так как , то .

Пусть . Так как после поворота , то уравнение (9) преобразуется до вида: (19)

Соберём члены, содержащие , и дополним их до полного квадрата:

тогда уравнение (19) примет вид: или , (20)

где . Из (20) следует, что

Рассмотрим два случая:

Пусть , тогда , то есть (21)

где

Положим , тогда уравнение (21) примет вид:

Это каноническое уравнение параболы, симметричной относительно

оси (OY ).

Пусть , тогда уравнение (20) перепишется в виде

(22)

. Если , то получим уравнение оси (OY ) .

. Если , то возможны два случая. Если A? и F? одного знака, то точек, удовлетворяющих данному уравнению, нет; если же A? и F? разных знаков, то , где , поэтому и уравнение (22) описывает две параллельные прямые: ) Пусть , тогда уравнение (9) примет вид

(23)

 

Если , а , то точек, удовлетворяющих уравнению (23), нет; если же или отличны от нуля, то уравнение (23) описывает прямую.

 

Вывод. Путем преобразований кривой второго порядка, определяемой уравнением (1) мы можем получить уравнения таких линии второго порядка, как:

- уравнение эллипса

- уравнение гиперболы

- уравнение параболы

- совокупности двуз пересекающихся прямых

- совокупности двух параллельных прямых

Содержание темы Линии второго порядка в элементарной математике

В математике рассматриваются линии второго порядка, как конические сечения: окружность, эллипс, гипербола, парабола; или как множество точек обладающих некоторыми свойствами.

Рассмотрим каждую линию второго порядка подробнее, определяя линии как множество точек.

ОКРУЖНОСТЬ

Определение 1.1. Окружность - множество точек плоскости, равноудаленных от данной точки М0, называемой ее центром.[9.С.65]

Общий вид уравнения

Исследование свойств окружности по её уравнению

Пресечение с осями координат:

С ОХ: Пусть у=0, тогда . Отсюда делаем вывод, что (-R;0), (R;0)- точки пересечения с осью ОХ.

С ОУ: Пусть х=0, тогда 02+у2=R2. Отсюда делаем вывод, что (0;-R),(0;R)- точки пресечения с осью ОУ.

Следовательно, у окружности с центром в начале координат область допустимых значений для и для закрытый интервал .

Вывод: Окружность вписана в квадрат с размером стороны 2R.[1.С.99]

) Симметрия окружности:

Относительно оси ОХ и оси ОУ, так как окружность имеет общие точки пересечения с осями координат.

Пусть принадлежит окружности, т. Е - верное равенство.

Точка симметрична точке М0 относительно оси ОХ. Подставим координаты точки М1 в уравнение окружности ,отсюда имеем: - верное равенство.

Следовательно, М1 принадлежит окружности, отсюда следует, что окружность симметрична относительно оси ОХ.

Точка симметрична точке М0 относительно оси ОУ, следовательно, окружность симметрична относительно оси ОУ.

Точка симметрична точке М0 относительно О (центра), следовательно, окружность симметрична относительно начала координат. [1.С.99-100]

Эксцентриситет окружности:

Определение 1.2. Отношение называется эксцентриситетом окружности. Для окружности эксцентриситет окружности равен нулю.

Касательная к окружности:

.">Определение 1.3. Прямая, имеющая с окружностью ровно одну общую точку, называется касательной к окружности.

Определение 1.4. Общая точка окружности и касательной называется точкой касания прямой и окружности.

Пусть точка принадлежит окружности, тогда уравнение касательной к окружности в данной точке имеет вид:

[1.С.100]

ЭЛЛИПС

Определение 2.1. Эллипс - множество точек плоскости, для каждой из которых сумма расстояний до двух данных точек F1 и F2 этой плоскости, называемых фокусами эллипса, есть заданная постоянная величина, равная 2а, а > 0, большая, чем расстояние между фокусами 2с, с > 0.

Общий вид уравнения

Исследование свойств эллипса по его уравнению

) Пересечение эллипса с осями координат: