Возможности использования ИКТ в изучении линий второго порядка в школьном курсе алгебры

Дипломная работа - Педагогика

Другие дипломы по предмету Педагогика

>

Найдем точки пересечения эллипса с осью ОХ: Пусть y=0, тогда уравнение эллипса имеет вид: , следовательно .

Отсюда следует, что точки (-a,0),(a,0) являются точками пересечения с осью ОХ.

Найдем точки пересечения эллипса с осью ОУ: Пусть х=0,отсюда имеем: , отсюда .

Следовательно, точки (-b,0),(b,0)являются точками пересечения с осью ОУ.

Отсюда заключаем, что границы эллипса , отображающие его схематичное построение. (чертеж 2) [1.С. 105]

 

Чертеж 2

 

Расстояние |A1A2| = 2a называется большой (фокальной) осью эллипса, расстояние |B1B2| = 2b называется малой осью эллипса. Расстояния от начала координат до вершин A2(a, 0), B2(0, b) называются соответственно большой и малой полуосями эллипса.

Вывод: Таким образом, заключаем, что эллипс вписан в прямоугольник с размерами 2a, 2b (чертеж 3).

 

Чертеж 3

2) Симметрия эллипса относительно координатных осей OX и OY:

Пусть принадлежит эллипсу, т. е - верное равенство.

Точка симметрична точке относительно оси ОХ

- верное равенство.

Следовательно, принадлежит эллипсу, отсюда заключаем, что эллипс симметричен относительно ОХ

Точка симметрична точке относительно оси ОУ, следовательно, эллипс симметричен относительно оси ОУ.

Точка симметрична точке относительно О (центра), следовательно, эллипс симметричен относительно начала координат.[1.С.105-106]

Фокусы эллипса:

Пусть фокусы эллипса лежат на оси ОX. Межфокусное расстояние эллипса равно причем . Заметим, что

 

. [1.С.106]

4) Эксцентриситет эллипса:

Определение 2.2. Эксцентриситетом эллипса называют отношение межфокусного расстояния 2с к длине большой оси 2а.

 

.

 

Так как , следовательно, .

Если стремится к нулю при постоянном значении , то стремится к нулю. При этом величина стремится к . В предельном случаи уравнение эллипса принимает вид: . Это уравнение окружности. Если , то . При этом малая ось эллипса неограниченно уменьшается, эллипс стремится к отрезку. (чертеж 4) [1.С.106]

 

Чертеж 4

 

) Диаметры эллипса:

Всякая хорда, проходящая через центр эллипса, называется диаметром эллипса. В частности, диаметрами эллипса является его большая ось и малая ось. Всякий диаметр эллипса, не являющийся его осью, больше малой оси, но меньше большой оси (чертеж 5). [1.С.106-107]

Чертеж 5

 

) Касательная к эллипсу:

Уравнение касательной к эллипсу где - координаты точки касания и соответственно большая и меньшая полуоси эллипса (чертеж 6).

 

Чертеж 6

 

) Частный случай эллипса - окружность:

 

 

, где окружности.

) Взаимное расположение точек и эллипса:

эллипсу, если верное равенство,

Если то лежит внутри эллипса,

Если то лежит вне эллипса. [1.С.100]

) Уравнения директрис эллипса:

Пусть эллипс задан уравнением и если при этом , то и уравнения директрис эллипса, если , то директрисы определяются уравнениями .

ГИПЕРБОЛА

Определение 3.1. Гипербола - множество точек плоскости, модуль разности расстояний от которых до двух данных точек этой плоскости, называемых фокусами гиперболы, есть заданная постоянная величина меньшая, чем расстояние между фокусами [8.С.510]

Общий вид уравнения

Исследование свойств гиперболы по ее уравнению

) Пересечение гиперболы с осями координат:

 

 

Очевидно, что гипербола состоит из двух ветвей: правой и левой, простирающихся в бесконечность.

В уравнении (12) положим, что y=0, получим: отсюда . Следовательно, точки являются точками пересечения гиперболы с осью (чертеж 7).

 

Чертеж 7

 

Положим, что в уравнении (12) х=0, и получим: , следовательно, уравнение гиперболы не пересекает ось .

ЗАМЕЧАНИЕ: Если мнимая ось гиперболы имеет длину 2a и направлена по оси (OX), а действительная ось длиной 2b совпадает с осью (OY), то уравнение гиперболы имеет вид: . [1.С.107-108]

Определение 3.2. Гиперболы, заданные уравнениями и , называются сопряженными гиперболами.

Определение 3.3. Если a=b, гипербола называется равносторонней.

) Симметрии гиперболы относительно координатных осей и :

Пусть принадлежит гиперболе, то есть верное равенство. Точка симметрична точке относительно оси ОХ:

 

- верное равенство. Следовательно, принадлежит гиперболе, следовательно, гипербола симметрична относительно ОХ.

Точка симметрична точке относительно оси ОУ, следовательно, гипербола симметрична относительно оси ОУ.

Точка симметрична точке относительно О (центра), отсюда следует, что гипербола симметрична относительно начала координат. [1.С.108]

) Асимптоты гиперболы:

Текущая точка гиперболы при движении по ней в бесконечность неограниченно приближается к некоторой прямой, которая называется асимптотой гиперболы. Асимптотами являются прямые, которые имеют следующие уравнения:

 

и ,

 

Пусть текущая точка гиперболы, ее проекция на ось абсцисс. Прямая пересекает прямую , заданную указанным уравнением в точке . Докажем: что при .

Доказательство:

.Расстояние это ордината точки , лежащей на прямой . Она равна . Расстояние это ордината точки гиперболы, которую находим из её канонического уравнения: Тогда

Умножим и разделим равенство (13) на (),следовательно, получим:

 

 

При знаменатель дроби неограниченно увеличивается, следовательно, дробь стремится к нулю.

- уравнение гиперболы, в которой а - являются асимптотами гиперболы. (чертеж 20.) [1.С.1