Формирование математических способностей (по В.А. Крутецкому) при изучении математики в деятельностном подходе

Дипломная работа - Педагогика

Другие дипломы по предмету Педагогика

ип задачи: Решал задачу на различные сочетания частей целого - про рыбу, у которой хвост с головой весит столько-то, а голова с туловищем - столько-то, и хвост с туловищем - еще столько-то.

Выделенные способности тесно связаны, влияют друг на друга и образуют в своей совокупности единую систему, целостную структуру, своеобразный синдром математической одаренности, математический склад ума.

Не входят в структуру математической одаренности те способности, наличие которых в этой системе не обязательно (хотя и полезно). В этом смысле они являются нейтральными по отношению к математической одаренности. Однако их наличие или отсутствие в структуре (точнее, степень их развития) определяют тип математического склада ума. Не являются обязательными в структуре математической одаренности следующие компоненты:

Быстрота мыслительных процессов как временная характеристика.

Вычислительные способности (способности к быстрым и точным вычислениям, часто в уме).

Память на цифры, числа, формулы.

Способность к пространственным представлениям.

Способность наглядно представить абстрактные математические отношения и зависимости.

 

1.3 Формирование математических способностей

 

Среди учителей распространены следующие заблуждения. Во-первых, многие считают, что математические способности заключаются, прежде всего, в способности к быстрому и точному вычислению (в частности в уме). На самом деле вычислительные способности далеко не всегда связаны с формированием подлинно математических способностей. Во-вторых, многие думают, что способные к математике школьники отличаются хорошей памятью на формулы, цифры, числа. Однако, как указывает академик А. Н. Колмогоров, успех в математике меньше всего основан на способности быстро и прочно запоминать большое количество фактов, цифр, формул. [6] Наконец, считают, что одним из показателей математических способностей является быстрота мыслительных процессов. [3] Особенно быстрый темп работы сам по себе не имеет отношения к математических способностям. Ученик может работать медленно и неторопливо, но в то же время вдумчиво, творчески, успешно продвигаясь в усвоении математики.

Исследования психологических особенностей формирования математических способностей у школьников показали, что обычно учащиеся усваивают содержательную сторону знаний и непосредственно с ней связанные конкретные приемы решения довольно узкого круга задач. Лишь у школьников с высокой обучаемостью на основе решения единичных задач формируются обобщенные приемы, методы решения целого класса задач.[7]

Формирование такого рода обобщенных приемов умственной деятельности чрезвычайно важно, так как оно означает существенный сдвиг в интеллектуальном развитии, расширяет возможности переноса знаний в относительно новые условия. Поскольку основная масса учащихся самостоятельно не овладевает более обобщенными приемами умственной деятельности, их формирование является важной задачей обучения.

В практике используется специальное формирование обобщенных приемов умственной деятельности. Обобщенные приемы умственной деятельности делятся на две большие группы - приемы алгоритмического типа и эвристические.

Приемы алгоритмического типа - это приемы рационального, правильного мышления, полностью соответствующего законам формальной логики. Точное следование предписаниям, даваемым такими приемами, обеспечивает безошибочное решение широкого класса задач, на который эти приемы непосредственно рассчитаны. С помощью этого приема учеников обучают тому, как определять понятия, классифицировать их, строить умозаключения, решать в соответствии с данным алгоритмом задачи, оказывает положительное влияние и на самостоятельное, продуктивное мышление, обеспечивает возможность решения задач-проблем.

Формирование приемов мыслительной деятельности алгоритмического типа, ориентирующих на формально-логический анализ задач, является необходимым, но не достаточным условием формирования математических способностей. Необходимо оно, во-первых, потому, что содействует совершенствованию репродуктивного мышления, являющегося важным компонентом творческой деятельности (особенно на начальном и конечном этапах решения проблем). Во-вторых, эти приемы служат тем фондом знаний, из которых ученик может черпать строительный материал для создания, конструирования методов решения новых для него задач.

Недостаточным формирование алгоритмических приемов является потому, что не соответствует специфике продуктивного мышления, не стимулирует интенсивное развитие именно этой стороны мыслительной деятельности. Вот почему формирование таких приемов должно сочетаться со специальным вооружением учащихся приемами эвристического типа.

Приемы другого типа назвали эвристическими потому, что они непосредственно стимулируют поиск решения новых проблем, открытие новых проблем, открытие новых для субъекта знаний и тем самым соответствуют самой природе, специфике творческого мышления. В отличие от приемов алгоритмического типа, эвристические приемы ориентируют не на формально-логический, а на содержательный анализ проблем. Они направляют мысль решающих на проникновение в суть описываемого в условии предметного содержания, на то, чтобы за каждым словом они видели его реальное содержание и по нему судили о роли в решении того или иного данного.

Многие эвристические приемы стимулируют включен