Формирование математических способностей (по В.А. Крутецкому) при изучении математики в деятельностном подходе

Дипломная работа - Педагогика

Другие дипломы по предмету Педагогика

?ого), которые тоже делятся на 3. Можно и алгебраически доказать: х+(х+1)+(х+2)=3х+3=3(х+1). Последнее выражение всегда можно разделить на 3, каково бы ни было исходное число х.

Вот как справляется с подобной задачей неспособный ученик.

Задача. Задумайте любое число, умножьте его на число, больше задуманного на 6 и прибавить 9. Доказать, что полученный результат является квадратом.

Уч.: А что значит является квадратом? Квадратом какого числа?

Эксп.: Есть числа, которые не являются квадратом какого-либо числа, например 13 или 20. А есть числа, которые являются результатом возведения в квадрат какого-либо числа, например 9 (т.е.3).

Уч.: Понятно. А здесь как доказывать?

Эксп.: Подумай. Примени, способ алгебраического доказательства. Сказано: Задумайте любое число. Как в алгебре обозначается любое число?

Уч.: А теперь знаю: х(х+6)+9=х2+6х+9. Вот х2 и есть квадрат задуманного числа.

Эксп.: Ты взял только часть результата. А тебе нужно доказать, что весь полученный результат есть квадрат какого-то числа. Квадратом какого выражения является полученный тобой результат? Вспомни формулы сокращенного умножения?

Уч.: Знаю. Получится (х+3)2. (дает ответ не сразу).

Эксп.: Но всегда ли в результате получится квадрат?

Уч.: Не знаю.

Лишь после продолжительного разъяснения экспериментатора ответил: По-моему, всегда, так как мы брали любое число.

Способность к быстрому и широкому обобщению математических объектов

Характеристика способности. Способность к обобщению математического материала рассматривается в двух планах: 1) как способность человека увидеть в частном, конкретном уже известном ему общее (подведение частного случая под известное общее понятие) и 2) способность увидеть в единичном, частном пока еще неизвестное общее (вывести общее из частных случаев, образовать понятие). Одно дело - увидеть возможность применение к данному частному случаю уже известной ученику формулы, другое - на основание частных случаев вывести формулу, еще неизвестную ученику.

Действия, представленные за данной способностью. При наличии данной математической способности школьники выполняют следующие действия:

видят сходную ситуацию в сфере числовой и знаковой символики (где применить);

владеют обобщенным типом решения, обобщенной схемой доказательства, рассуждения (что применить).

И в том и другом случае необходимо отвлечься от конкретного содержания и выделить сходное, общее и существенное в структурах объектов, отношений или действий.

Особенности выполнения II этапа решения задач учащимися, обладающими данной способностью. На выявление этой способности В.А. Крутецкий предлагает серию задач, которая уже использовалась для проверки математической способности - способность к формализованному восприятию математического материала.

Приведем пример решения одной из задачи этой серии. После решения примера на применение формулы квадрат суммы дается способному ученику для решения пример: (C+D+E)(E+C+D). Ученик применяет формулу и пишет (C+D+E)2 и соединяет два члена - (C+(D+E))2 после чего непосредственно применяет формулу и раскрывает скобки.

Неспособные к математике ученик, усвоив формулу (a+b)2 и принцип рассуждения приступает к решению примера (1+а3b2)2.

Эксп.: А вот этот пример можно решить по формуле сокращенного умножения?.

Уч.: Здесь что-то другое - и a и b справа и не разделяются плюсом… (пишет: . Эксп.: Куда же делась единица?. Ученик молчит.

Эксп.: Ну а реши такой пример: (2x+y)2.

Ученик пишет, повторяя вслух формулу: 4x2+22xy+y2=4x2+4x+y2.

Эксп.: Верно. Вот так же решай и предыдущую задачу.

Уч.: А здесь что-то другое… квадрат первого - это .

Эксп.: Давай рассуждать вместе. Чтобы применить формулу, надо убедиться, что мы имеем дело с квадратом суммы двух чисел. Тебе ясно, что это квадрат?

Уч.: Вот здесь (показывает) цифра 2 показывает, что-то, что в скобках, надо помножить само на себя.

Эксп.: Верно. А в скобках двучлен? Покажи, где первый член, первое число.

Уч.: …или нет, что я говорю… между членами должен быть знак плюс. Тут нет первого члена, только второй.

В дальнейшем ученик все же решает данный пример с помощью экспериментатора.

Способность к свертыванию процесса математического рассуждения и системы соответствующих действий. Способность мыслить свернутыми структурами

Характеристика способности. Наряду с развернутыми умозаключениями в умственной деятельности школьников при решении задач занимает определенное место и свернутые умозаключения, когда ученик не осознает правила, общего положения, в соответствии с которыми он фактически действует.

Действия, представленные за данной способностью. При наличии данной математической способности школьники выполняют действие - свертывание умозаключений.

То есть в процессе решения задач ученик не выполняет всей той цепи соображений и умозаключений, которые образуют полную, развернутую структуру решения.

Особенности выполнения II этапа решения задач учащимися, обладающими данной способностью. На выявление этой способности применяется серия Система разнотипных задач. Приведем пример как способный ученик решал одну из задач этой серии.

Задача. Автомобиль прошел путь из А в Б со скоростью 20 км в час, а обратно со скоростью 30 км в час. Какова средняя скорость автомобиля за весь рейс?

Уч.: Ясно, что со скоростью 30 км в час он шел меньше времени, чем со скоростью 20 км в час (при одинаковом пути). А раз так, то с?/p>