Формирование математических способностей (по В.А. Крутецкому) при изучении математики в деятельностном подходе

Дипломная работа - Педагогика

Другие дипломы по предмету Педагогика

?едняя скорость не будет равна 25 км в час. Как же решить? (Дальнейший ход решения разбиваем на отдельные звенья.) Буду решать по рассуждению.

Скорость - это результат от деления пути на время. Значит, надо знать общий путь и общее время, затраченное на весь путь, и поделить общий путь на общее время.

Теперь ясно, как решить. Надо узнать весь пройденный путь. Если путь в один конец обозначим через х, то весь путь - 2х.

Теперь надо узнать время. Оно различно. Чтобы узнать время, надо поделить путь на скорость.

На путь туда потратили

А на путь обратно потрачено

А всего весь путь занял, значит, =

Делим теперь общий путь на общее количество часов:

х : км в час.

Что касается неспособных, то у них не замечалось сколько-нибудь заметного свертывания даже в результате многих упражнений. На первых этапах овладения они постоянно путаются в громоздкой цепи умозаключений, которая с трудом, с помощью экспериментатора, закрепляется, постепенно превращается в относительно стройную систему. Ни о каком свертывании на этих этапах не может быть и речи, так как сам процесс рассуждения еще находится на стадии становления. Да и в дальнейшем они нуждались лишь в полном составе рассуждений.

Гибкость мыслительных процессов в математической деятельности

Характеристика способности. Эта математическая способность выражается в легком и свободном переключении с одной умственной операции на другую, в многообразие аспектов подходов к решению задач, в легкости перестройки сложившихся схем мышления и систем действий.

Действия, представленные за данной способностью. При наличии данной математической способности школьники выполняют следующие действие - переключаются на новый способ действия, т.е. с одной умственной операции на другую.

Особенности выполнения II этапа решения задач учащимися, обладающими данной способностью. На эту способность направлены серия тестов Задачи, наталкивающие на самоограничение. В эту серию отобраны задачи на рассуждение, отличающиеся следующими способностями: либо их условие обычно воспринимается с ограничением, которого в действительности не существует, либо в процессе решения решающий невольно ограничивает себя некоторыми возможностями, неправомерно исключая друг друга. В том и другом случае непроизвольное ограничение приводит к мысли о невозможности решения задачи.

Способный ученик решает задачу В прямоугольном треугольнике один катет 7 см. Определить две другие стороны, если они выражены целыми числами.

Построить треугольник по одной стороне? Что-то странное…Правда, еще угол дан - прямой, но все равно нельзя… (чертит). Ну, вот же видно - сторона и угол постоянны, а вот сколько разных треугольников. Может быть, задача не решается? (Эксп.: Нет. Задача решается.) Странно… (чертит) Ну вот же ясно видно, что бесконечное количество решений (еще чертит). Что-то я не столько решаю, сколько пытаюсь доказать, что она не решается... Может быть, вариантов-то много, но все они выражаются дробными числами (еще раз читает условие). Может быть только один случай, когда выражаются целыми числами? Наверное, так - в условии об этом не говориться, но можно понять…Но тогда это надо доказать… Если гипотенуза а, а неизвестный катет b, то a2=49+b2 по Пифагору, а 49=a2-b2…Ну и что дальше? a+b=49/a-b. Чувствую, что это что-то даст…Если a и b - целые числа, то и их сумма - целое число…Ну вот, ясно все: значит, 49 делится на a-b без остатка. А 49 делится только на 7…Но a-b не может быть равно 7, так как тогда и треугольника не будет (гипотенуза в точности равна двум катетам - две стороны равны третий)…Где-то тут есть решение, я его упустил… Но ведь 49 делится не только 7, а и на 1, и на 49. Ну вот теперь решение в кармане: 49 тоже не может быть - гипотенуза будет больше, чем сумма катетов. Остается одно: a-b=1, a a+b=49. Получится 25 см. гипотенуза и 24 см катет.

Неспособных учеников отличает инертность, косность, скованность мысли в сфере математических отношений и действий, устойчивый, стереотипный характер действий, навязчивое удерживание в сознании предшествующего принципа решений, способа действий, оказывающего тормозящее влияние при необходимости перестроить действие, что определяет ярко выраженную затрудненность и переключении от одной умственной операции к другой, качественно иной.

Стремления к ясности, простоте решения, экономности и рациональности решения

Характеристика способности. Эта особенность математического мышления способных к математике учащихся тесно связана с предыдущей. Для способных учеников весьма характерно стремление к наиболее рациональным решениям задач, поиски наиболее ясного, кратчайшего, а, следовательно, и наиболее изящного пути к цели. Это выглядит как своеобразная тенденция к экономии мысли, выражающееся в поисках наиболее экономных путей решения задач.

Действия, представленные за данной способностью. При наличии данной математической способности школьники выполняют следующие действие - находят наиболее рациональное решение задачи.

Особенности выполнения II этапа решения задач учащимися, обладающими данной способностью. Эту способность Вадим Андреевич выяснял при помощи Задачи на соображение логическое рассуждение. Для этого он сопоставлял реальный процесс рассуждения школьника с максимально развернутым. Сравнивал количество и характер звеньев в том и другом случае, они сопоставляются с характером и количеством звеньев действительно развернутой структуры.

Н?/p>