Разработка факультативного курса "Алгебраические числа" для учащихся общеобразовательной школы
Дипломная работа - Педагогика
Другие дипломы по предмету Педагогика
?я знакомство с полярной системой координат и тригонометрической формой комплексного числа. Основное внимание следует уделить арифметическим действиям над комплексными числами, решению линейных и квадратных уравнений с действительными и комплексными коэффициентами. Мы умышленно предлагаем расширенный список задач на комплексные числа. В нем содержатся разнообразные задачи, связанные с геометрическим представлением комплексных чисел. При решении этих задач используются свойства прямоугольных треугольников и окружностей, т.е. наблюдаются определенные межпредметные связи. Следует обратить внимание на задачи, использующие понятие расстояния между точками на плоскости и его интерпретацию на языке комплексных чисел.
Нет сомнения в том, что задачи на комплексные числа способны вызвать живой интерес учащихся. С помощью задач можно организовать индивидуальную самостоятельную работу, а потом разобрать их решения на дополнительном занятии.
После рассмотрения числовых множеств для более наглядного понимания и для закрепления удобно привести графическую диаграмму, иллюстрирующую расположение основных числовых множеств. Учащиеся должны понять вложение числовых множеств одно в другое. Например, натуральные числа являются подмножеством целых чисел. Этот факт следует даже из определения целых чисел - это натуральные числа, противоположные к ним и нуль. Поэтому круг, изображающий множество натуральных чисел, находится внутри круга целых чисел. Аналогичные рассуждения можно провести и с другими множествами. Необходимо обратить внимание на расположение рациональных и иррациональных чисел. Они не являются подмножествами друг друга. Дети должны понять, что все действительные числа делятся на непересекающиеся множества рациональных и иррациональных чисел.
Тема 3.2. Алгебраические числа. Основная цель заключительных тем - демонстрация новых идей. Овладение техникой отходит на задний план, поскольку сама техника весьма нетривиальна. Новые красивые идеи, несомненно, способны вызвать интерес у школьников, интересующихся математикой, открыть перед ними ее красоту.
В данной теме могут возникнуть трудности с пониманием различных понятий: поле, алгебраически замкнутое поле, запись многочленов с большим числом переменных. Кроме того, при доказательстве теорем о поле алгебраических чисел используются формулы Виета и теорема о симметрических многочленах по наборам переменных - это достаточно тонкие рассуждения и вполне естественны трудности при понимании соответствующих рассуждений. Вполне допустимо, если эти теоремы будут приведены на минимальном уровне строгости, вполне допустимо ограничиться пониманием соответствующих формулировок и их применением при решении задач.
Тема 3.3. Теорема Кантора. При введении понятия счетности множества надо расшифровать слово пересчитать в определении. Полезным является установление сначала разного сорта взаимно-однозначных соответствий между простейшими геометрическими фигурами, и только после этого следует переходить к доказательству счетности различных числовых множеств. После доказательства теоремы Кантора следует указать на его неконструктивность, т.е. невозможность указать хотя бы одно неалгебраическое число.
Заключение
Изучение истории дополнительного образования показало, что дополнительное образование и внеклассная работа взаимосвязаны и входят в состав непрерывного математического образования. В своем развитии дополнительное математическое образование и внеклассная работа прошли несколько этапов, но наиболее важный период для появления факультативных и внеклассных занятий - 60-е года 20 века. Это позволило реализовать дифференцированный подход к обучению и осуществить индивидуализацию отечественного образования. Условиями организации дополнительного образования является определение некоторой модели: Свободная мысль, Личностная модель, Развивающая модель, Активизирующая модель, Формирующая модель, Обогащенная модель, где заложены свои критерии и система методов: критерии преемственности методов, критерий соответствия целям и задачам обучения, критерии соответствия содержанию занятий, критерии соответствия возрастным и индивидуальным особенностям развития старшеклассников. А также при построении курса дополнительного математического образования необходимо учитывать комплексный подход к разработке такого курса, а также психологические особенности детей, на возрастную группу которых рассчитан этот курс. Этим вопросам посвящена целиком первая глава.
С учетом первой главы предложена разработка факультативного курса Алгебраические числа, в частности, определено содержание курса, предложена примерная программа, а также методические рекомендации по организации работы. Предлагаемый курс является естественным продолжением факультативного курса Многочлены от одной переменной, разработанного Г.В. Дорофеевым. Кроме того, предлагаемый факультативный курс можно рассматривать как естественное продолжение одной из важнейших линий школьного курса - числовой линии. При отборе содержания учитывалась история возникновения и развития основных понятий, а также их связи с другими важнейшими понятиями основного курса и значимость не только для математики, но и для общего образования. При отборе содержания и подаче материала мы отдавали предпочтение идеям, а не отработке технических навы