Пособие содержит словарь физиологических терминов, рисунки, схемы, что поможет студентам при изучении физиологии центральной нервной системы. © Северо-Кавказский социальный институт
Вид материала | Документы |
- Учебно-методический комплекс по дисциплине «физиология центральной нервной системы», 1510.33kb.
- «Северо-Кавказский социальный институт», 340.94kb.
- Физиология центральной нервной системы Цель дисциплины, 20.01kb.
- Б. Н. Шварц русско-эсперантский, 1382.08kb.
- Учебно-методический комплекс по дисциплине «анатомия центральной нервной системы», 450.28kb.
- Учебное пособие раскрывает происхождение и значение более 1000 учебных терминов, 1634.01kb.
- Словарь лингвистических терминов, 13990.3kb.
- Учебное пособие Северо-Кавказский социальный институт 2004 удк 572 Печатается 88., 3788.2kb.
- Учебно-методический комплекс дисциплины «анатомия центральной нервной системы» Специальности, 294.67kb.
- «Анатомия и физиология центральной нервной системы и сенсорных систем», 102.43kb.
^ 6.3. Симпатическая и парасимпатическая система
Симпатические нервные волокна имеют значительно более широкое распространение, чем парасимпатические. Симпатические нервы иннервируют фактически все органы и ткани организма (Табл.1).
Парасимпатической иннервации не имеют: скелетная мускулатура, ЦНС, большая часть кровеносных сосудов, матка, мозг, органы чувств и мозговое вещество надпочечников (Табл.1.).
Верхние сегменты симпатического отдела ВНС посылают свои волокна через верхний шейный симпатический узел к органам головы; следующие сегменты посылают их через нижележащие симпатические узлы к органам грудной полости и передним конечностям. Далее следует ряд грудных сегментов, посылающих волокна через солнечное сплетение и в верхний брыжеечный узел к органам брюшной полости; от поясничных сегментов волокна направляются через нижний брыжеечный узел к органам малого таза и задним конечностям.
Парасимпатические волокна ко многим органам проходят в составе блуждающего нерва, который иннервирует бронхи, сердце, пищевод, желудок, печень, тонкие кишки, поджелудочную железу, надпочечники, почки, селезенку и часть толстых кишок.
Периферическая часть симпатических и парасимпатических нервных путей построена из двух последовательно расположенных нейронов.
Ганглии симпатической нервной системы в зависимости от локализации разделяют на вертебральные и превертебральные.
Вертебральные ганглии расположены по обе стороны позвоночника. Они связаны со спинным мозгом нервными волокнами, которые образуют белые соединительные ветви. По ним к ганглиям идут преганглионарные волокна от нейронов, тела которых расположены в боковых рогах торако-люмбального отдела спинного мозга.
Таблица 1
^ Основные различия в строении и функции нервных систем
| СИМПАТИЧЕСКАЯ | ПАРАСИМПАТИЧЕСКАЯ |
Место выхода Нервных волокон | Грудной и поясничный отделы спинного мозга | Средний, продолговатый мозг и пояснично-крестцовый отдел спинного мозга |
Расположение вегетативных ганглиев | Симпатическая преганглионарная цепочка, солнечное сплетение, верхний и нижний брыжеечные узлы | Вблизи иннервируемых органов или внутри них (интрамуральные ганглии) |
Медиаторы: - в ганглиях - в органах | Ацетилхолин Адреналин и норадреналин, кроме вазодилятаторов и потоотделительных нервов, где медиатор - ацетилхолин | Ацетилхолин Ацетилхолин |
Функциональное значение | Мобилизация всех функций организма при различных нагрузках (физических и эмоциональных) | Восстановление ресурсов, обеспечение функций на уровне физиологического покоя |
Волокна же постганглионарных симпатических нейронов направляются от узлов к периферическим органам по двум путям: 1) по самостоятельным нервным путям; 2) в составе соматических нервов. В ганглиях пограничного ствола прерывается большинство симпатических преганглионарных волокон, меньшая их часть проходит через пограничный ствол без перерыва и прерывается в превертебральных ганглиях.
Превертебральные ганглии располагаются на большем расстоянии от позвоночника, чем ганглии пограничного ствола. Они также находятся в некотором отдалении и от иннервируемых ими органов. К числу превертебральных ганглиев относят солнечное сплетение, верхний и нижний брыжеечные узлы. В них прерываются симпатические и преганглионарные волокна, прошедшие без перерыва узлы пограничного ствола.
Ганглии парасимпатической системы расположены внутри органов или вблизи них. Внутриорганные ганглии представляют собой сплетения, богатые нервными клетками, расположенные в мышечных стенках многих внутренних органов, например, сердца, бронхов, средней и нижней третей пищевода, желудка, кишечника, желчного пузыря, мочевого пузыря, а также в железах внешней и внутренней секреции.
Аксон первого парасимпатического нейрона, находящийся в среднем мозге, продолговатом мозге или в сакральном отделе спинного мозга, доходит по иннервируемого органа, не прерываясь. Второй парасимпатический нейрон расположен внутри этого органа или в непосредственной близости от него – в прилежащем к нему узле.
В преганглионарных волокнах парасимпатической нервной системы медиатором является ацетилхолин, он взаимодействует на постсинаптической мембране постганглионарного нейрона с H-холинорецепторами, которые блокируются ганглиоблокаторами. Следовательно, передача возбуждения с преганглионарного волокна на постганглионарный нейрон в парасимпатической системе происходит так же, как и в симпатической нервной системе. В окончаниях постганглионарных волокон парасимпатической нервной системы, в отличие от симпатической, выделяется ацетилхолин. На постсинаптической мембране органа (или нейрона метасимпатической системы) расположены М-холинорецепторами (мускаринчувствительные холинорецепторы), которые блокируются веществами типа атропина.
Парасимпатическая система способствует угнетению частоты, силы, проводимости и возбудимости на сердце, усилению работы гладкомышечной мускулатуры бронхов, вызывая их сужение; усилению работы секреторных клеток трахеи, гладкой мускулатуры и секреторных клеток ЖКТ.
При раздражении парасимпатических нервов повышается кривизна хрусталика, усиливается преломляющая способность глаза, повышается кровенаполнение сосудов половых органов, усиливается слюноотделение и повышается секреция слезной жидкости.
Для симпатической системы характерно явление мультипликации, т.е. количество постганглионарных волокон значительно больше, чем преганглионарных. Каждое преганглионарное волокно контактирует в ганглии с большим количеством нейронов (до 30) и охватывает, в свою очередь, большие участки иннервируемой ткани. Вследствие такого ветвления возбуждение по симпатическим волокнам распространяется диффузно, занимая большие области.
В парасимпатической систем нет такого обильного ветвления, и поэтому характер возбуждения более локальный. В окончаниях подавляющего большинства постганглионарных симпатических волокон выделяется норадреналин. Периферические окончания парасимпатической нервной системе парализуется атропином, тогда как симпатическая система блокируется другим веществом – эрготоксином.
Аксон-рефлексы. При раздражении вегетативных нервов обнаружены своеобразные реакции, получившие название аксон-рефлексов или псевдорефлексов. Эти реакции были описаны Ленгли, который отрицал существование истинных рефлексов, осуществляемых вегетативными ганглиями.
Аксон-рефлексы отличаются от истинных рефлексов тем, что при них не происходит передачи возбуждения с рецепторного нейрона на эффекторный. Они могут возникать в том случае, если аксоны пре- или постганглионарных нейронов ветвятся так, что одна ветвь иннервирует один орган или одну его часть, а другая ветвь иннервирует другой орган или другую его часть. Вследствие такого ветвления аксонов раздражение одной ветви может вызвать распространение возбуждения и по второй ветви, вызывая реакцию отдаленного от места раздражения органа.
Основные различия в строении и функции симпатической и парасимпатической систем представлены в таблице.
Теперь рассмотрим влияние высших нервных центров на активность нейронов парасимпатической и симпатической нервной системы.
Большую роль в регуляции играет гипоталамус. Он представляет собой скопление более чем 32 пар ядер. В настоящее время большинство авторов разделяет весь гипоталамус на 4 области или группы ядер:
Преоптическую, которая состоит из перивентрикулярного ядра, медиального и латерального преоптических ядер;
- Переднюю, которая состоит из супраоптического, супрахиазматического, паравентрикулярного и переднего гипоталамического ядер;
- Среднюю, которая состоит из вентромедиального, дорсомедиального, аркуатного и латерального гипоталамического ядер;
- Заднюю, которая состоит из супрамамиллярного, премамиллярного, латерального и медиального мамиллярных, субталамического, заднего гипоталамического и периформиатного ядер.
Полагают, что в гипоталамусе имеются ядра, которые активируют преимущественно либо парасимпатические нейроны ствола и спинного мозга, либо симпатические нейроны спинного мозга. Их называют соответственно трофотропными и эрготропными ядрами. Они расположены в передних и задних отделах гипоталамуса.
Следует помнить, что в их расположении нет четкой локализации. Ядра гипоталамуса являются высшими вегетативными центрами.
Таким образом, благодаря обширным связям гипоталамуса с различными структурами мозга, за счет продукции гормонов и нейросекреции, гипоталамус участвует в регуляции многих функций организма через гуморальное звено регуляции, изменяя продукцию гормонов гипофиза. Гипоталамо-гипофизарные связи, которые, как видно из сказанного, имеют два варианта - связь через аксоны с нейрогипофизом и через систему портальных сосудов с передним гипофизом - играют очень важную роль в жизнедеятельности организма, в связи с чем им уделяется такое большое внимание.
Гипоталамус является центральной структурой лимбической системы: именно благодаря гипоталамусу все эмоциональные реакции, которые реализуются с участием лимбической системы мозга, приобретают конкретную вегетативную и эндокринную окраску.
Мозжечок также играет важную роль в регуляции функций организма.
Он, как и симпатическая нервная система, выполняет адаптационно-трофическую функцию, т.е. способствует активации всех резервов организма для выполнения мышечной работы. Будучи одним из важнейших центров, участвующих в регуляции двигательной активности, мозжечок должен принимать участие и в регуляции вегетативного обеспечения мышечной активности. Он влияет на возбудимость вегетативных нервных центров и тем самым способствует адаптации организма к выполнению двигательных актов. Таким образом, его можно рассматривать как посредника между вегетативной и соматической нервной системами.
Особое внимание следует уделить коре больших полушарий как регулятору вегетативной нервной системы. С помощью методов электростимуляции и разрушения отдельных областей коры установлено, что ее нейроны оказывают свое влияние на деятельность многих органов. Например, электростимуляция премоторной зоны коры вызывает уменьшение потоотделения, снижение температуры противоположной стороны тела, уменьшение моторики желудка. Разрушение передних отделов поясной извилины (это структура лимбической системы) вызывает изменение дыхания, деятельности сердечно-сосудистой системы, почек, желчного пузыря, меняет моторику и секреторные процессы в желудочно-кишечном тракте.
Многие центры ВНС постоянно находятся в состоянии тонуса, вследствие чего иннервированные ими органы непрерывно получают от них возбуждающие или тормозящие импульсы.
Тонус вегетативных центров поддерживается притоком к ним афферентных нервных импульсов от рецепторов внутренних органов и отчасти от экстерорецепторов, а также воздействием на них химического состава крови и цереброспинальной жидкости. Например, тонус той группы нервных клеток ядра блуждающего нерва, которые посылают импульсы к сердцу, поддерживают с одной стороны нервные импульсы, поступающие к ним от барорецепторов артериальных стенок, а с другой стороны гуморальные факторы (адреналин, кальций).
Вопросы для самоконтроля и повторения:
1. Опишите основные механизмы метасимпатической нервной системы.
2. Каковы основные функции парасимпатической нервной системы?
3. Роль отделов ЦНС в деятельности симпатической нервной системы.
4. Какую роль играют ядра гипоталамуса по отношению к вегетативной нервной системе?
7. ^ ФИЗИОЛОГИЯ БОЛИ, РОЛЬ ТАХИКИНИНОВ
И ОПИАТНЫХ РЕЦЕПТОРОВ
- 7.1. Биологическое назначение боли
Особое положение среди других видов чувствительности занимает болевая рецепция. Боль дает относительно мало информации о внешнем мире и в тоже же время предупреждает организм о грозящей ему опасности, способствуя сохранению целостности организма, а порой и самой жизни. «Боль - сторожевой пес здоровья», - говорили древние греки. Полноценное возникновение ощущения боли возможно лишь при сохранении сознания, так как в противном случае исчезают многие реакции, свойственные боли.
Несмотря на важность проблемы боли для медицины (ведь именно боль, лишая больного покоя, заставляет обратиться к врачу), только в последние два десятилетия появились исследования, позволяющие сформулировать научно обоснованную концепцию болевой сенсорной системы. Однако и сегодня многие аспекты этой проблемы еще далеки от решения.
Согласно современным представлениям боль вызывают ноцицептивные (noces - вредный) раздражители, то есть такие, которые повреждают целостность тканей. Например, яд только тогда вызывает боль, когда разрушает или умерщвляет ткань.
Чувство боли вызывает поведенческую реакцию организма, которая направлена на устранение опасности.
Пока боль предупреждает организм о грозящей опасности, о нарушении целостности его, она нужна. Как только информация учтена, боль превращаться в страдание, и тогда ее желательно «выключить», но боль не всегда прекращается после того, как защитная ее функция выполнена. Как правило, человек не в состоянии по собственному желанию прекратить боль, когда она становится излишней. И тогда она, по принципу доминанты может полностью покорить его сознание, направлять его мысли, расстраивать сон, дезорганизовать функции всего организма. Очевидно, что в таком случае боль из физиологической превращается в патологическую.
Патологическая боль обуславливает развитие структурно-функциональных изменений и повреждений в сердечно-сосудистой системе, во внутренних органах, дистрофию тканей, нарушение вегетативных реакций, изменение деятельности нервной, эндокринной, иммунной систем. Вместе с тем многие заболевания внутренних органов (например, рак) возникают, не вызывая боли. Лишь только при далеко зашедшем процессе, когда излечение становится почти невозможным, развивается боль.
^ 7.2. Виды боли.
Различают два вида боли:
- физическую,
- психогенную.
Физическую боль, в зависимости от причины возникновения, подразделяют на три разновидности:
- обусловленная внешним воздействием,
- обусловленная внутренним процессом,
- обусловленная повреждением нервной системы.
Психогенная боль, обусловлена психологическим статусом человека и возникает в связи с соответствующим его эмоциональным состоянием. Психогенная боль, так или иначе, возникает по воле человека.
Источник боли может находиться в коже, двигательном аппарате или внутренних органах. Возникающая в коже соматическая боль называется поверхностной, а в мышцах, костях, суставах, соединительной ткани - глубокой. Соматическая боль бывает ранняя и поздняя.
Полагают, что ранняя боль, являясь сигналом опасности, служит организму для ориентировки в окружающей среде. Поздняя боль, как более продолжительная, позволяет ЦНС разобраться в происхождении ноцицептивного воздействия и принять меры к его устранению. Возникающей с латентным периодом в 0,5-1 с, поздняя боль может быть жгучей или тупой (ноющей). По сравнению с ранней болью, точно локализовать ее труднее. Соматическую боль вызывают воздействия многих физических и химических факторов. Попытка отыскать универсальный посредник, появляющийся в тканях при действии раздражителя, успеха не имела.
^ Висцеральная боль отличается от соматической как по интенсивности, так и по механизму развития. Она, как и глубокая боль, часто диффузной или тупой, плохо локализуется и имеет тенденцию ирригировать в окружающие области. Во внутренних органах боль возникает:
- при резком растяжении органа (например, кишечника, желчного пузыря, при потягивании за брыжейку);
- затруднении оттока крови (ишемии);
- спазме гладких мышц (печеночная, почечная).
Особенно болезненны наружная стенка артерий, париетальная брюшина, перикард, париетальная плевра.
Имеется еще один вид боли - отраженная. Это болевые ощущения, вызванные ноцицептивным раздражением внутренних органов, которые локализуются не в данном органе, а в отдаленных участках тела. Особенно часто отраженные боли возникают в теле. Механизм их сводится к тому, что некоторые кожные болевые афференты, идущие от внутренних органов, при вхождении в спинной мозг широко конвергируют на один и тот же нейрон. Так, при заболевании сердца человек ощущает боль в левой руке, лопатке, эпигастральной области; при заболевании желудка - в области пупка; при поражении диафрагмы – в затылке или лопатке; при почечной колике - в яичках и в области груди; при заболевании гортани - в ухе. Заболевания печени, желудка и желчного пузыря нередко сопровождаются зубной болью.
Так как взаимодействие между отдельными участками (дерматомами) и внутренними органами в сегментах спинного мозга хорошо известно, подобные отраженные боли играют большую роль в диагностике различных заболеваний.
^ 7.3 Нейрофизиологические механизмы боли
Возникновение боли происходит при избыточной силе или продолжительности действия обычных сенсорных стимулов на обычные (неспецифические) рецепторы; однако в настоящее время большинство исследователей являются сторонниками теории специфичности. Основные ее положения следующие:
- существование специфических рецепторов, воспринимающих действие патологического агента;
- наличие специфических проводящих афферентных путей;
- наличие в головном мозге специфических структур, обеспечивающих
переработку соответствующей информации.
Болевой раздражитель воспринимают свободные нервные окончания.
Установлено, что, например, на коже болевых точек значительно больше чувствительных к давлению (9:1) или к холоду и теплу (10:1). Одно это свидетельствует о наличии самостоятельных ноцицепторов. Ноцицепторы есть и в скелетных мышцах, сердце, внутренних органах. Много ноцирецепторов имеется в легких, их раздражителем являются газы, пылевые частицы.
Все соматические рецепторы можно подразделить на низко- и высокопороговые. Низкопороговые рецепторы воспринимают давление, температуру. Ноцирецепторы являются, как правило, высокопороговыми и возбуждаются при воздействии сильных повреждающих раздражителей. Среди них различают механо - и хеморецепторы.
Механорецепторы располагаются, в основном, в соме. Их основной задачей является сохранение целостности защитных покровов. Этим рецепторам боли присуще свойство адаптации, так что при длительном воздействии раздражителя острота воспринимаемой боли уменьшается.
Хеморецепторы располагаются преимущественно в коже, мышцах, внутренних органах (главным образом, в стенках мелких артерий). В своем большинстве они передают импульсацию по С-афферентам (скорость проведения около 1 м/с). Возбуждение хеморецепторов обуславливают те вещества, которые отнимают у тканей кислород. Непосредственным раздражителем ноцицепторов являются вещества, которые до этого находятся внутри клеток. К примеру, ими являются ионы калия, брадикинины. У химических ноцицепторов практически отсутствует свойство адаптации (в плане понижения чувствительности). Напротив, при воспалении, повреждении тканей чувствительность хемоноцицепторов постепенно возрастает. Это обусловлено повышением в тканях содержания гистамина, простагландинов, кининов, которые модулируют чувствительность ноцицептивных хеморецепторов. Названные соединения воздействуют либо прямо на мембрану рецептора, либо опосредованно, через состояние сосудов, приводя к гипоксии тканей. Таким образом, можно сказать, что с помощью хеморецепторов контролируется тканевое дыхание. Чрезмерное нарушение этих процессов является опасным для организма, о чем и сигнализируют ноцицепторы, которые наряду с химическими и механическими раздражителями реагируют и на температурные стимулы. Ноцицептивные терморецепторы начинают возбуждаться при действии на кожу температуры выше 45 °С.
^ 7.4. Участие спинного мозга в реализации механизма боли
Проводящими путями болевой чувствительности являются задние корешки соматических нервов, симпатические и некоторые парасимпатические афференты. Первые передают раннюю боль, вторые - позднюю, В целом восходящие пути ноцицептивной сенсорной системы примерно такие же, как и у других видов чувствительности.
Для большинства афферентов (естественно, кроме ноцицепторов, располагающихся на голове) первым уровнем переработки восходящей болевой сигнализации является спинной мозг. Здесь в сером веществе заднего рога в краевой зоне располагаются нейроны, от которых начинаются восходящие спиноталамические пути. Первичная боль проводится от нейронов I, IV-VI пластин, которые после перекреста по боковому канатику доходят до вентрального постеролатерального ядра зрительного бугра
В спинном мозге в переработке информации, поступающей от рецепторов, принимают участие как другие афференты, так и нисходящие сигналы от различных отделов головного мозга. Благодаря широкой сети контактов ноцицептивных интернейронов с неболевыми, порог чувствительности ноцицепторов может модулироваться. Участие вышележащих центров в регуляции поступления ноцицептивных стимулов по афферентным путям на уровне спинного мозга основано на широком проявлении механизмов конвергенции, суммации, облегчения и торможения, Так, понижение чувствительности вставочных нейронов спинного мозга приведет к тому, что далеко не все импульсы, поступившие с периферии, будут переданы выше. К примеру, боль, возникающая при порезе пальца, уменьшается при давлении на окружающие ткани.
Указанный механизм обработки ноцицептивной информации на уровне спинного мозга получил название «воротный механизм». Если тормозится передача импульсации, то говорят о «закрытии ворот», при усилении - об «открытии ворот». В основе указанного механизма лежат следующие представления. Передача ноцицептивных сигналов модулируется системой нейронов заднего рога, получающих сигналы от различных сегментов большого и малого диаметра. В основе его лежит как количество импульсов, поступающих от ноцицептивных и других афферентов, так и источник их. Высокая интенсивность импульсов, поступающих по нейронам большого диаметра, ограничивает восходящую импульсацию нейронов малого диаметра, к которым относятся и ноцицептивные волокна. И, наоборот, высокая интенсивность импульсации по волокнам малого диаметра, увеличивает вероятность проведения восходящей ноцицептивной афферентации. Кроме того, обработка ноцицептивной импульсации на уровне спинного мозга корректируется нисходящими влияниям вышележащих нервных центров (особенно ретикулярной формации ствола) вплоть до коры больших полушарий. На уровне системы воротного контроля проведение боли осуществляется с помощью пептида Р, который часто называют медиатором боли (от англ. pain - боль).
Результатом деятельности спинного мозга по анализу болевой импульсации может быть, не только передача ее к вышележащим отделам ЦНС, но и формирование ответных рефлекторных реакций. Так, использование в качестве эфферентов мотонейронов приводит к мышечному движению (например, отдергиванию руки от горячего предмета), а вегетативных нервов - к соответствующим изменениям со стороны внутренних органов, сосудов, обменных процессов.
Однако на уровне спинного мозга само ощущение боли еще отсутствует, оно возникает лишь в центрах головного мозга.