Иванова Оксана Юрьевна (ф и. о.) учебно-методический комплекс
Вид материала | Учебно-методический комплекс |
Содержание1.6. Кодирование данных |
- Колущинская Оксана Юрьевна, ст преподаватель кафедры «Менеджмент и маркетинг» Омского, 566.62kb.
- Старожильцева Оксана Владимировна учебно-методический комплекс, 1246.36kb.
- Старожильцева Оксана Владимировна учебно-методический комплекс, 434.46kb.
- Старожильцева Оксана Владимировна учебно-методический комплекс, 449.91kb.
- Сатина Лидия Юрьевна учебно-методический комплекс, 332.18kb.
- Карташова Ольга Юрьевна Должность доцент Рецензенты: Мошкова Ирина Николаевна ученая, 202.78kb.
- Парамонова Татьяна Николаевна д э. н., проф. Депутатова Елена Юрьевна, преподаватель, 468.06kb.
- Коноваленко Марина Юрьевна, профессор кафедры связей с общественностью и журналистики, 332.3kb.
- Коноваленко Марина Юрьевна, профессор кафедры связей с общественностью и журналистики, 1079.72kb.
- Парамонова Татьяна Николаевна д э. н., профессор Красюк Ирина Николаевна к э. н., доцент,, 1704.02kb.
1.6. Кодирование данных
Для автоматизации работы с данными очень важно унифицировать их формы представления. Для этого используются различные приемы кодирования.
Данные считаются закодированными, если они представлены в виде набора цифр, которые называются кодами. Любая компьютерная система обрабатывает данные в закодированном виде, причем для построения кодов используется двоичная система счисления.
Рассмотрим методы кодирования цифровых, текстовых, графических и звуковых данных.
Кодирование цифровых данных заключается в представлении исходных десятичных цифр в виде двоично-десятичных кодов согласно следующей таблице 1.6.1. Таблица 1.6.1
Двоичные коды десятичных чисел
Десятичные цифры | Двоичный код | Десятичные цифры | Двоичный код |
0 | 0000 | 5 | 0101 |
1 | 0001 | 6 | 0110 |
2 | 0010 | 7 | 0111 |
3 | 0011 | 8 | 1000 |
4 | 0100 | 9 | 1001 |
Таким образом, десятичное число 375,125(10) в двоично-десятичном коде будет выглядеть следующим образом: 001101110101.000100100101.
В дальнейшем эти двоично-десятичные коды по специальной программе переводятся в двоичную систему счисления.
Для кодирования символьных данных существуют две международные системы:
- Восьмиразрядная система ASCII (AMERICAN STANDARD CODE FOR INFORMATIONAL INTERCHANGE – американский стандартный код информационного обмена).
- Шестнадцати разрядная система кодирования UNICODE
Восьмиразрядная система ASCII осуществляет кодирование в пределах одного байта и позволяет получить 256 кодовых комбинаций (28=256).
Существует специальная кодовая таблица для кодирования символьных данных, которая имеет 16 строк и 16 столбцов (таблица 1.6.2).
Таблица 1.6.2
Кодовая таблица символов
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | А | В | С | D | Е | F |
0 | | | | | Управляющие коды | | | | | | | |||||
1 | | | | | | | | | | | ||||||
2 | | | | | | | | | | | | | | | | |
3 | | | | | Буквы английского алфавита десятичные цифры, знаки арифметических и логических операций | | | | | | | |||||
4 | | А | | | | | | | | | ||||||
5 | | | | | | | | | | | ||||||
6 | | | | | | | | | | | ||||||
7 | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |
8 | | | | | | | | | | | | | | | | |
9 | | | | | | | | | | | | | | | | |
А | | | | | Буквы национальных алфавитов (в частности русского) и символы псевдографики | | | | | | | |||||
В | | | | | | | | | | | ||||||
С | А | | | | | | | | | | ||||||
D | | | | | | | | | | | ||||||
Е | | | | | | | | | | | | | | | | |
F | | | | | | | | | | | | | | | | |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | А | В | С | D | Е | F |
Примеры:
А- английская – 41(16) = 01000001(2)
А- русская - C0(16) = 11000000(2)
Шестнадцати разрядная система кодирования UNICODE осуществляет кодирование в пределах двух байтов и позволяет иметь 65536 кодовых комбинаций. (216 = 65536)
Несмотря на очевидное преимущество этой системы внедрение ее сдерживалось из-за недостаточных ресурсов памяти персональных компьютеров, так как в системе UNICODE все символы занимают объем памяти в два раза больший, чем в системе ASCII. Однако в настоящее время объем оперативной памяти современных персональных компьютеров достигает 256, 512 и даже 1024 МБ (1 ГБ), и поэтому данная система начинает постепенно внедряться в практику.
Графические данные, хранящиеся в аналоговой (непрерывной) форме на бумаге, фото и кинопленке могут быть преобразованы в цифровой компьютерный формат путем пространственной дискретизации. Это реализуется путем сканирования (сканером), результатом которого является растровое изображение (растр). Растровое изображение состоит из отдельных точек – пикселов (от английского словосочетания picture element – элемент изображения).
Для кодирования цветных изображений применяется принцип декомпозиции произвольного цвета на три основных составляющих: красного – R (RED), зеленого – G (GREEN) и синего B (BLUE). На практике считается, что любой цвет, видимый человеческим глазом, можно получить путем механического смешения этих трех основных цветов. Если для кодирования яркости каждого из этих основных цветовых составляющих использовать также 8-разрядный двоичный код, то можно закодировать по 256 градаций их яркости (28 = 256). Очевидно, что для кодирования цвета одного пиксела необходимо 24 двоичных разряда (три байта). Такая система кодирования называется системой RGB – по первым буквам названий основных цветов (RED – красный, GREEN – зеленый, BLUE – синий). Такая система обеспечивает однозначное кодирование примерно 16,5 миллиона различных цветовых оттенков (224 16,5 миллиона), что близко к чувствительности человеческого глаза. Система кодирования RGB называется еще полноцветной (TRUE COLOR).