От лат cavitas пустота), образование в капельной жидкости полостей, заполненных газом, паром или их смесью (т н. кавитац пузырьков или каверн). Кавитац
Вид материала | Документы |
- Вывихи. Переломы, 241.71kb.
- От лат evaporo испаряю и греч grapho пишу), метод получения изображений объектов, 2696.94kb.
- Реферат от лат rеfеrо "сообщаю", 198.27kb.
- Абсцесс и гангрена легкого определение заболевания острый абсцесс легкого, 403.26kb.
- Перелом подвздошной кости; перелом вертлужной впадины; перелом лобковой кости; открытая, 1124.91kb.
- Вишнев В. Н. Безродная Н. В. Остеохондроз Профилактика и лечение Введение, 623.65kb.
- Реферат от лат. «сообщать», 61.18kb.
- Лекция. Взаимосвязанные рынки, 285.49kb.
- Реферат Реферат, 36.91kb.
- Предыстория или как мне удалось получить музыкальное образование и чем это обернулось, 2157.21kb.
Состав ГКЛ. Поток К. л. у Земли равен ~1 частице (см2•с). Более 90% ч-ц первичных К. л. всех энергий составляют протоны, 7% — -частицы и лишь небольшая доля (1%) приходится на ядра более тяжёлых элементов. Такой состав прибл. соответствует ср. распространённости элементов во Вселенной с двумя существ. отклонениями: в К. л. значительно больше лёгких (Li, Be, В) и тяжёлых ядер с Z20. Согласно совр. представлениям, «обогащение» К. л. тяжёлыми ядрами явл. следствием более эффективного их ускорения в источнике по сравнению с лёгкими ядрами. А большое кол-во ядер Li, Be, В по сравнению со ср. распространённостью связано с расщеплением тяжёлых ядер при столкновениях с ядрами атомов межзвёздной среды. Из наблюдаемого кол-ва ядер лёгкой группы и изотопного состава ядер Be получены оценки расстояния, проходимого К. л. в межзвёздной среде (~3 г/см2), и времени жизни К. л. в Галактике (~3•107 лет). В составе К. л. имеются также эл-ны (1%), обнаружение к-рых (1961) в необходимом кол-ве экспериментально подтвердило гипотезу о синхротронной природе косм. радиоизлучения. Благодаря этому появилась возможность исследовать К. л. не только вблизи Земли, но и в удалённых областях Галактики с помощью радиоастр. методов. Радиоастр. данные показали, что К. л. более или менее равномерно заполняют всю Галактику.
в спектре исчезает при самых высоких энергиях. Спектры ядер разл. элементов прибл. подобны при ξ2,5•109 эВ/нуклон.
С помощью энергетич. спектра можно вычислить поток и плотность энергии К. л. в пр-ве. Плотность энергии ГКЛ составляет прибл. 10-12 эрг/см3=0,6 эВ/см3, что сравнимо по порядку величины с плотностью всех др. видов энергии: гравитац., магн., кинетич. энергии движения межзвёздного газа. Для решения вопроса об источнике К. л. привлекаются данные астрофизики и радиоастрономии. Как показывают оценки, наблюдаемую величину плотности энергии К. л. могут обеспечить вспышки сверхновых звёзд, к-рые происходят в нашей Галактике не реже одного раза в сто лет, и образующиеся при этом пульсары. Отсюда можно предполагать, что К. л. имеют галактическое (а не метагалактическое) происхождение. Ускорение ч-ц до сверхвысоких энергий может происходить при столкновении с движущимися нерегулярными и неоднородными межзвёздными магн. полями. Хим. состав К. л. формируется при прохождении ими межзвёздной среды. За счёт длит. диффузии в Галактике в межзвёздных магн. полях происходит перемешивание К. л. от разл. источников и достигается наблюдаемая изотропия (~0,1%) косм. излучения.
313
Вариации К. л. Геомагнитные эффекты. Проникая в Солн. систему, ГКЛ вступают во вз-ствие с межпланетным магн. полем, к-рое формируется намагнич. плазмой, движущейся радиально от Солнца (солнечный ветер). В Солн. системе устанавливается равновесие между конвективным потоком К. л., выносимым солнечным ветром наружу, и потоком, направленным внутрь системы. Влияние межпланетного поля «чувствуют» ч-цы сравнительно небольших энергий (ξ <1010 эВ), ларморовский радиус к-рых сравним с размерами неоднородностей межпланетного магн. поля. Параметры гелиосферы изменяются с изменением солн. активности в течение 11-летнего цикла, и в ГКЛ наблюдается модуляция интенсивности, наз. 11-летней вариацией. Интенсивность К. л. изменяется в лротивофазе с солн. активностью. Амплитуда вариаций различна для разных энергий.
Попадая в магн. поле Земли, К. л. отклоняются от первонач. направления вследствие действия на них Лоренца силы. На заданную широту вблизи Земли с данного направления приходят только ч-цы с энергией, превышающей нек-рое пороговое значение. Этот эффект наз. геомагнитным обрезанием. Отклоняющее действие геомагн. поля проявляется тем сильнее, чем меньше геомагн. широта места наблюдения. Так, напр., с вертик. направления на экватор попадают протоны только с энергией ξξпор1,5•1010 эВ, на геомагн. широту 51° — с энергией ξξпор2,5•109 эВ. Так как ГКЛ имеют падающий с ростом энергии спектр, на экваторе наблюдается меньшая интенсивность, чем на высоких широтах,— т. н. широтный эффект К. л.
Взаимодействие К. л. с веществом. Попадая в атмосферу Земли, высокоэнергичные протоны и др. ядра К. л. испытывают столкновения с ядрами атомов воздуха (в осн. азота и кислорода). В результате вз-ствия происходит расщепление ядер и рождение неск. нестабильных элем. ч-ц (т. н. множественные процессы). Ср. пробег до яд. вз-ствия в атмосфере для протонов прибл. равен 90 г/см2, что составляет ~1/11 часть всей толщи атмосферы, следовательно, протон успеет неск. раз провзаимодействовать с ядрами, прежде чем достигнет поверхности Земли. Поэтому вероятность дойти до уровня моря у первичных К. л. крайне мала. На больших глубинах в атмосфере регистрируется вторичное излучение, разделяемое в соответствии с природой и св-вами на ядерно-активную, мюонную и электронно-фотонную компоненты.
При вз-ствии первичной ч-цы с ядрами атомов воздуха рождаются почти все известные элем. ч-цы, среди
к-рых гл. роль играют -мезоны, как заряженные, так и нейтральные. Нуклоны и не успевшие распасться ±-мезоны образуют ядерно-активную компоненту вторичного излучения. Взаимодействуя с ядрами атомов воздуха, они, подобно первичной ч-це, рождают новые каскады ч-ц до тех пор, пока их энергия не снизится до ξ~109 эВ. На уровне моря остаётся менее 1% ядерно-активных ч-ц.
Мюонная и нейтринная компоненты образуются при распаде ±-мезонов [±±+v (v~)]. Высокоэнергичные мюоны слабо взаимодействуют с в-вом, поэтому они доходят до уровня моря и проникают глубоко под землю. Нейтроны и мюоны вторичного излучения постоянно регистрируются сетью наземных станций. На основе этих измерений исследуются вариации интенсивности первичных К. л.
Возникновение электронно-фотонной компоненты связано с распадом °-мезонов: 02. В кулоновском поле ядер каждый -квант рождает электрон-позитронную пару (е+ +е-). За счёт тормозного излучения ч-ц этой пары вновь возникают -кванты, к-рые рождают, в свою очередь, электрон-позитронные пары. Повторение этого процесса приводит к лавинообразному размножению числа ч-ц до тех пор, пока при нек-рой ξкрит, преобладающими не станут конкурирующие процессы потери энергии -квантами и эл-нами (позитронами). После этого происходит затухание каскада. Число ч-ц в максимуме каскада пропорц. энергии первичной ч-цы. Каскады, образующиеся при К. л. с ξ>1014 эВ, содержат 106 — 109 ч-ц; они наз. широкими атм. ливнями (ШАЛ). С помощью ШАЛ проводится исследование К. л. в области сверхвысоких энергий.
Солнечные К. л., в отличие от первичных ГКЛ, наблюдаются эпизодически после нек-рых хромосферных вспышек. Частота появления СКЛ коррелирует с уровнем солн. активности: в годы максимума солн. активности регистрируется ~10 событий в год с энергией ч-ц ξ107 эВ, а в годы минимума — одно или не бывает вовсе.
В СКЛ наблюдаются ч-цы с более низкими (по сравнению с ГКЛ) энергиями; энергии протонов обычно ограничиваются долями ГэВ, иногда достигают неск. ГэВ. Интенсивность СКЛ падает с уменьшением энергии ч-ц резче, чем интенсивность ГКЛ, причём показатель степени интегр. спектра изменяется от события к событию в пределах от 2 до 7. Верх. предел энергии СКЛ точно не установлен. Ниж. граница регистрируемых ч-ц СКЛ составляет десятки кэВ. В большинстве случаев состав СКЛ в интервале ξ~(1—3) •107 эВ/нуклон соответствует распространённости элементов на Солнце. Часто наблюдаются вариации в 2—3 раза относит. содержания ядер Не и Fe. Из данных по
составу «легких» ядер, как и в случае ГКЛ, получена оценка толщи в-ва, проходимого СКЛ в атмосфере Солнца, составляющая 0,2 г/см2. Это показывает, что ускорение ч-ц во время солн. вспышки происходит не в глубине солн. атмосферы, а в верхних её слоях — короне или верх. хромосфере. В интервале ξ<107 эВ/нуклон потоки СКЛ часто обогащены тяжёлыми ядрами, что указывает на наличие преимуществ. ускорения тяжёлых ядер на Солнце в области малых энергий. Ускорение ч-ц на Солнце интенсивно исследуется благодаря наличию наблюдательных данных по спектрам и потокам СКЛ, полученным с ИСЗ и межпланетных автоматич. станций, а также благодаря процессам, сопровождающим генерацию СКЛ (радиоизлучение, рентг. излучение).
Интенсивность СКЛ различается от события к событию на неск. порядков величины, более интенсивные события наблюдаются, как правило, после сильных хромосферных вспышек. Изменения интенсивности связаны, очевидно, с разными условиями генерации и выхода ч-ц из области ускорения. Наибольшее значение интенсивности измерено после вспышки 4 августа 1972 , оно составило 7 •104 частиц/(см2 •с•ср) для ч-ц с энергией ξ:107 эВ.
Длительность возрастаний интенсивности СКЛ составляет неск. суток для ξ107 эВ и неск. часов для больших энергий. В начале возрастаний наблюдается анизотропия ч-ц вдоль силовых линий межпланетного магн. поля.
Значит. рост потока СКЛ вызывает дополнит. ионизацию в ионосфере, обусловливая помехи и прекращение связи на КВ. Интенсивные потоки СКЛ представляют радиац. опасность для косм. полётов.
• Гинзбург В. Л., Сыроватский С. И., Происхождение космических лучей, М., 1963; Д о р м а н Л. И., Экспериментальные и теоретические основы астрофизики космических лучей, М., 1975; М у р з и н В. С., Введение в физику космических лучей, М., 1979.
А. И. Сладкова.
КОСМИЧЕСКИЕ СКОРОСТИ (первая vI, вторая vII, третья vIII), минимальные нач. скорости в задаче двух тел, при к-рых к.-л. тело: 1) может стать спутником др. тела (планеты) — vI; 2) преодолеть гравитац. притяжение планеты — vII; покинуть Солн. систему, преодолев притяжение Солнца,—
vIII.
Первая К. с. для спутников Земли
v1=gМ/r, где G — постоянная тяготения, М — масса Земли, r — расстояние от центра Земли до точки пр-ва, где тело приобретает скорость vI по касательной к круговой траектории относительно Земли. Для поверхности Земли (принимаемой за однородный шар радиусом 6371 км, лишённый атмосферы) vI=7,9 км/с.
Вторая К. с. vII=2GM/r=vI2. Её наз. также скоростью убегания (ускользания) или параболич. скоростью, т. к. часть молекул земной
314
атмосферы обладает скоростями теплового движения vvII и может навсегда покинуть верх. слои атмосферы (процесс диссипации атмосферы). Название «параболич. скорость» связано с тем, что при нач. скорости, равной vII, тело с массой т будет двигаться относительно тела с массой М (при m<
vII=11,18 км/с.
Третья К. с. отвечает параболич. скорости относительно Солнца; вблизи орбиты Земли она составляет 42,10 км/с. Для достижения этой скорости тело, запускаемое с Земли, должно приобрести у поверхности Земли скорость 16,6 км/с.
Аналогично К. с. могут быть вычислены и для поверхности др. косм. тел. Так, для Луны vI=l,680 км/с, vII=2,375 км/с. Для Венеры и Марса соответственно vIIB=10,4 км/с и VIIM=5,0 км/с.
• Левантовский В. И., Механика космического полета в элементарном изложении, М., 1970; Руппе Г. О., Введение в астронавтику, пер. с англ., т. 1, М., 1970; Дубошин Г. Н., Небесная механика, Основные задачи и методы, 2 изд., М., 1968.
КОСМОЛОГИЯ (от греч. kosmos — мир, Вселенная и logos — слово, учение), учение о Вселенной как едином целом и о всей охваченной астр. наблюдениями области Вселенной (Метагалактике) как части целого; раздел астрономии. Выводы К. основываются на законах физики и данных наблюдат. астрономии, а также философских принципах (в конечном счёте — на всей системе знаний) своей эпохи. Важнейшим философским постулатом К. явл. положение, согласно к-рому законы природы (законы физики), установленные на основе изучения весьма ограниченной части Вселенной, чаще всего на основе опытов на планете Земля, могут быть экстраполированы на значительно большие области, в конечном счёте — на всю Вселенную.
Космологические теории различаются в зависимости от того, какие физ. принципы и законы кладутся в основу К. Построенные на их основе модели должны допускать проверку для наблюдаемой области Вселенной, выводы теории должны подтверждаться наблюдениями (во всяком случае, не противоречить им), теория должна предсказывать новые явления. В 80-х гг. 20 в. этому требованию наилучшим образом удовлетворяют разработанные на основе общей теории относительности (в релятив. К.) однородные изотропные модели нестационарной горячей Вселенной.
Возникновение совр. К. связано с созданием релятив. теории тяготения (А. Эйнштейн, 1916) и зарождением внегалактич. астрономии (20-е гг.). На первом этапе развития релятив. К. главное внимание уделялось геометрии
Вселенной (кривизна четырёхмерного пространства-времени и возможная замкнутость Вселенной). Начало второго этапа можно датировать работами сов. учёного А. А. Фридмана (1922— 1924), в к-рых он показал, что Вселенная, заполненная тяготеющим в-вом, не может быть стационарной — она должна расширяться или сжиматься; но эти принципиально новые результаты получили признание лишь после открытия красного смещения (эффекта «разбегания» галактик) амер. астрономом Э. Хабблом (1929). В результате на первый план выступили проблемы механики Вселенной и её «возраста» (длительности расширения). Третий этап начинается моделями «горячей» Вселенной (амер. физик Г. Гамов, 2-я пол. 40-х гг.), в к-рых осн. внимание переносится на физику Вселенной — состояние в-ва и физ. процессы, идущие на разных стадиях расширения Вселенной, включая наиб. ранние стадии, когда состояние было необычным. Наряду с законом тяготения в К. приобретают большое значение законы термодинамики, данные яд. физики и физики элем. ч-ц. Возникает релятив. астрофизика, к-рая заполняет былую брешь между К. и астрофизикой.
В основе теории однородной изотропной Вселенной лежат: ур-ния Эйнштейна общей теории относительности, из них следует кривизна пространства-времени и связь кривизны с плотностью массы (энергии); представления об однородности и изотропности Вселенной (во Вселенной нет к.-л. выделенных точек и направлений, т. е. все точки и направления равноправны). Последнее утверждение часто называют космологич. постулатом. Если дополнительно предположить, что во Вселенной отсутствуют гипотетич. силы, возрастающие с расстоянием и противодействующие тяготению в-ва, а плотность массы создаётся гл. обр. в-вом, то космологич. ур-ния приобретают особенно простой вид и возможными оказываются только две модели. В одной из них кривизна трёхмерного пр-ва отрицательна или (в пределе) равна нулю, Вселенная бесконечна (открытая модель); в такой модели расстояния между скоплениями галактик со временем неограниченно возрастают. В др. модели кривизна пр-ва положительна, Вселенная конечна (но столь же безгранична, как и в открытой модели); в такой (замкнутой) модели расширение со временем сменяется сжатием. В ходе эволюции Вселенной кривизна трёхмерного пр-ва уменьшается при расширении, увеличивается при сжатии, но знак кривизны не меняется, т. е. открытая модель остаётся открытой, замкнутая — замкнутой. Нач. стадии эволюции по обеим моделям совершенно одинаковы: должно было существовать особое нач. состояние — сингулярность с огромной (не меньше чем с планковской 1093 г/см3) плотностью массы и кривизной пр-ва и взрывное, замедляющееся со временем расширение.
Характер эволюции схематически показан на рис. 1 (замкнутая модель) и рис. 2 (открытая модель). По оси абсцисс отложено время, причём момент взрывного начала принят за начало отсчёта времени (t=0).
По оси ординат отложен нек-рый масштабный фактор R, в качестве к-рого может быть принято, напр., расстояние между теми или иными двумя далёкими объектами (галактиками). Зависимость R=R(t) изображается на рис. сплошной линией; прерывистая линия — изменение кривизны в ходе эволюции (кривизна пропорц. 1/R2). Заметим ещё, что относит. скорость изменения расстояний 1/R•dR/dt=H есть не что иное, как Хаббла постоянная (точнее, параметр Хаббла). В нач. момент (t0) фактор R0, а параметр Хаббла H. В наше время значение Н лежит в пределах 50—100 (км/с)/Мпк, что соответствует времени расширения от 10 до 20 млрд. лет. Из космологич. ур-ний следует, что при заданном Н равная нулю кривизна трёхмеряого пр-ва может иметь место только при строго определённой (критической) плотности массы кp= Зс2H2/G, где G — гравитационная постоянная. Если >кр, то мир замкнут, при <=<кp мир явл. открытым. Указанные выше два исходных положения релятив. К. достаточны для суждений об общем характере эволюции Вселенной, но они оставляют открытым вопрос о её нач. состоянии. Задание хар-к нач. состояния представляет собой третье независимое положение релятив. К. С 60—70-х гг. стала общепринятой модель «горячей» Вселенной (предполагается высокая начальная температура). В условиях очень высокой темперы (T>1013 К) вблизи сингулярности не могли существовать не только молекулы или атомы, но даже и ат. ядра; существовала лишь равновесная смесь разных элем. ч-ц (включая фотоны и нейтрино). На основе физики элем. ч-ц можно рассчитать состав такой смеси при разных темп-pax Т, соответствующих последоват. этапам эволюции. Ур-ния К. позволяют найти закон расширения однородной и изотропной Вселенной и изменение её физических параметров в процессе расширения. Согласно этому закону, плотность числа ч-ц вещества
315
уменьшается лропорц. R-3 (или t-2), плотность излучения ~R-4 и т. д. Поскольку расширение вначале к тому же идёт с большой скоростью, очевидно, что высокие плотность и темп-ра могли существовать только очень короткое время. Действительно, уже при t0,01 с плотность упадёт от бесконечного (формально) значения до ~1010 г/см3. Во Вселенной в момент t~0,01 с должны были сосуществовать фотоны, эл-ны, позитроны, нейтрино и антинейтрино, а также небольшая примесь нуклонов (протонов и нейтронов). В результате последующих превращений к моменту t3 мин из нуклонов образуется смесь лёгких ядер (2/3 водорода и 1/3 гелия по массе; все остальные хим. элементы синтезируются из этого дозвёздного в-ва, причём намного позднее, в результате яд. реакций в недрах звёзд; см. Нуклеосинтез). В момент образования нейтральных атомов гелия и водорода (рекомбинация нуклонов и электронов в атомы произошла при t~106 лет) вещество становится прозрачным для оставшихся фотонов, и они должны наблюдаться в настоящее время в виде реликтового излучения, свойства к-рого можно предсказать на основе теории «горячей» Вселенной. Хотя расширение вначале идёт очень быстро, процессы превращений элем. ч-ц в самом начале расширения протекают несравненно быстрее, в результате чего устанавливается последовательность состояний термодинамич. равновесия. Это чрезвычайно важное обстоятельство, поскольку такое состояние полностью описывается макроскопич. параметрами (определяемыми скоростью расширения) и совершенно не зависит от предшествующей истории. Поэтому незнание того, что происходило при плотностях, намного превосходящих ядерную, не мешает делать б. или м. достоверные суждения о более поздних состояниях, описываемых законами совр. физики микромира. Общие законы физики надёжно проверены при яд. плотностях (~1014 г/см3), эту плотность имеет Вселенная спустя 10-4 с от начала расширения. Следовательно, физ. св-ва эволюционирующей Вселенной вполне поддаются изучению со времени 10-4 с от состояния сингулярности (в ряде случаев эту границу отодвигают непосредственно к сингулярности). Выводы релятив. К. имеют радикальный, революц. характер, и вопрос о степени их достоверности представляет большой общенауч. и мировоззренческий интерес. Наибольшее принципиальное значение имеют выводы о нестационарности (расширении) Вселенной, о высоких значениях плотности и темп-ры в начале расширения («горячая» Вселенная) и об искривлённости пространства-времени. Несколько более частный характер имеют
проблемы знака кривизны трёхмерного пр-ва окружающего мира, а также степени однородности и изотропии Вселенной. Вывод о нестационарности надёжно подтверждён космологич. красным смещением; наблюдаемая область Вселенной с линейными размерами порядка неск. млрд. парсек расширяется, и это расширение длится по меньшей мере неск. млрд. лет (объекты, находящиеся на расстоянии 1 млрд. пк, мы видим такими, какими они были ок. 3 млрд. лет тому назад). Столь же основат. подтверждение нашла и концепция «горячей» Вселенной: в 1965 было открыто реликтовое излучение, к-рое оказалось в высокой мере, с точностью до долей процента, изотропным, а спектр его равновесным (планковским) с T3K. Это доказывает, что Вселенная на протяжении более чем 0,99 времени своего существования изотропна. Это, естественно, повышает доверие к однородным изотропным моделям, к-рые до этого рассматривались как весьма грубое приближение к действительности.
Кривизна трёхмерного пр-ва пока не измерена. Её можно было бы определить, если бы была известна ср. плотность массы во Вселенной или можно было бы определить более точно зависимость красного смещения от расстояния (отклонение от линейной зависимости). Астрономич. наблюдения приводят к значениям усреднённой плотности в-ва, входящего в видимые галактики, ок. 3•10-31 г/см3. Определить плотность скрытого (невидимого) в-ва, а тем более плотность, создаваемую нейтрино (если масса нейтрино не равна нулю), гораздо труднее, и неопределённость суммарной плотности из-за этого весьма велика (она может быть, в частности, на два порядка больше усреднённой плотности звёздного в-ва). На основе имеющихся наблюдат. данных (103-31<<10-29) нельзя сделать никакого выбора между открытой (расширяющейся безгранично) и замкнутой (расширение в далёком будущем сменится сжатием) моделями. Эта неопределённость никак не сказывается на общем характере прошлого и совр. расширения, но влияет на возраст Вселенной (длительность расширения) — величину не достаточно определённую по данным наблюдений. Если бы расширение происходило с пост. скоростью, то время, истекшее с момента изначального взрыва до наст. времени, составляло бы [при H0=75 (км/с)/Мпк]
T0=1/H0=13 млрд. лет. Но расширение, как видно из приведённых выше графиков, идёт с замедлением, поэтому время Т, истекшее с момента начала расширения, меньше Т0. Так, при =кр имеем: Т= 2/3T0=8,7 млрд. лет. Для >кр, т. е. для замкнутых моделей, Т ещё меньше. С др. стороны, если существуют космологнч. силы, соответствующие отталкиванию, то
оказывается возможной, напр., длительная (порядка 10 или более млрд. лет) задержка расширения в прошлом, и Т может составлять десятки млрд. лет.
Релятив. К. объясняет наблюдаемое совр. состояние Вселенной, она предсказала неизвестные ранее явления. Но развитие К. поставило и ряд новых, крайне трудных проблем, к-рые ещё не решены. Так, для изучения состояния в-ва с плотностями на много порядков выше яд. плотности нужна совершенно новая физ. теория (предположительно, некий синтез существующей теории тяготения и квант. теории). Подходы же к изучению сингулярности пока лишь намечаются.
По мере развития К. возник вопрос о единственности Вселенной. В рамках совр. К. довольно естественно считать Метагалактику единственной. Но вопросы топологии пространства-времени разработаны ещё недостаточно для того, чтобы составить представление о возможностях, к-рые могут быть реализованы в природе. Это надо иметь в виду, в частности, и в связи с проблемой возраста Вселенной.
Существует проблема зарядовой асимметрии во Вселенной; в нашем космич. окружении (во всяком случае, в пределах Солн. системы и Галактики, а вероятно, и в пределах всей Вселенной) имеет место подавляющее количеств. преобладание в-ва над антивеществом. Причины, приведшие к наблюдаемой асимметрии между веществом и антивеществом своими корнями уходят, по-видимому, в самые ранние стадии развития Вселенной.
К успешно решаемым проблемам К. относится образование скоплений галактик и отд. галактик. Они возникли после стадии рекомбинации благодаря росту имевшихся небольших неоднородностей в распределении в-ва и влиянию гравитац. неустойчивости. Ряд др. проблем К. (проблема сингулярности, выбора космологич. моделей и др.) пока ещё не решены.
• Зельдович Я. В., Новиков И. Д., Строение и эволюция Вселенной, М., 1975; Новиков И. Д., Эволюция Вселенной, М., 1979; 3 е л ь м а н о в А. Л., Космология, в кн.: Физический энциклопедический словарь, т, 2, М., 1962; Бесконечность и Вселенная. Сб., М., 1969; Ш а м а Д., Современная космология, пер. с англ., М., 1973; Пиблс П., Физическая космология, пер. с англ., М., 1975; Вейнберг С., Гравитация и космология, пер. с англ., М., 1975. Г. И. Наан.