А. С. Гринберг О. Б. Плющ Б. В. Новыш Теория вероятностей и математическая статистика Курс лекций

Вид материалаКурс лекций

Содержание


Определение доверительных интервалов
Доверительный интервал для математического ожидания нормального распределения при неизвестной дисперсии
Доверительный интервал для оценки среднего квадратического отклонения  нормального распределения
Подобный материал:
1   ...   18   19   20   21   22   23   24   25   26

Определение доверительных интервалов

Доверительный интервал для математического ожидания нормального распределения при известной дисперсии


Пусть количественный признак X генеральной совокупности распределен нормально, причем среднее квадратическое отклонение  этого распределения известно. Требуется оценить неизвестное математическое ожидание a по выборочному среднему . Найдем доверительные интервалы, покрывающие параметр a с надежностью .

Будем рассматривать выборочное среднее , как случайную величину (т.к. меняется от выборки к выборке), и выборочные значения , как одинаково распределенные независимые случайные величины (эти числа также меняются от выборки к выборке). Другими словами, математическое ожидание каждой из этих величин равно a и среднее квадратическое отклонение – . Так как случайная величина X распределена нормально, то и выборочное среднее также распределено нормально. Параметры распределения равны:

.

Потребуем, чтобы выполнялось соотношение , где – заданная надежность.

Используем формулу .

Заменим X на и  на и получим:

,

где .

Выразив из последнего равенства , получим:

.

Так как вероятность P задана и равна , окончательно имеем:

.

Смысл полученного соотношения – с надежностью можно утверждать, что доверительный интервал покрывает неизвестный параметр a, причем точность оценки равна .

Таким образом, задача решена. Число определяется из равенства ; по таблице функции Лапласа находят аргумент , которому соответствует значение функции Лапласа, равное .

Следует отметить два момента: 1) при возрастании объема выборки n число убывает и, следовательно, точность оценки увеличивается, 2) увеличение надежности оценки приводит к увеличению (так как функция Лапласа – возрастающая функция) и, следовательно, к возрастанию , то есть увеличение надежности оценки влечет за собой уменьшение ее точности.

Если требуется оценить математическое ожидание с наперед заданной точностью и надежностью , то минимальный объем выборки, который обеспечит эту точность, находят по формуле , следующей из равенства .

Доверительный интервал для математического ожидания нормального распределения при неизвестной дисперсии


Пусть количественный признак X генеральной совокупности распределен нормально, причем среднее квадратическое отклонение  этого распределения неизвестно. Требуется оценить неизвестное математическое ожидание с помощью доверительных интервалов.

Оказывается, что по данным выборки можно построить случайную величину , которая имеет распределение Стьюдента с степенями свободы. В последнем выражении – – выборочное среднее, – исправленное среднее квадратическое отклонение, – объем выборки; возможные значения случайной величины T мы будем обозначать через t. Плотность распределения Стьюдента имеет вид:

,

где некоторая постоянная, выражающаяся через гамма–функции. Как видно, распределение Стьюдента определяется параметром n – объемом выборки (или, что то же самое – числом степеней свободы ) и не зависит от неизвестных параметров . Поскольку – четная функция от t , то вероятность выполнения неравенства определяется следующим образом:

.

Заменив неравенство в круглых скобках двойным неравенством, получим выражение для искомого доверительного интервала:



Итак, с помощью распределения Стьюдента найден доверительный интервал , покрывающий неизвестный параметр a с надежностью . По таблице распределения Стьюдента и заданным n и можно найти , и, используя найденные по выборке и , можно определить доверительный интервал.

Пример. Количественный признак X генеральной совокупности распределен нормально. По выборке объема n=16 найдены генеральное среднее и исправленное среднее квадратическое отклонение . Требуется оценить неизвестное математическое ожидание при помощи доверительного интервала с надежностью 0,95.

Решение. Найдем по таблице распределения Стьюдента, используя значения . Этот параметр оказывается равным 2,13. Найдем границы доверительного интервала:



.

То есть с надежностью 0,95 неизвестный параметр a заключен в доверительном интервале .

Можно показать, что при возрастании объема выборки n распределение Стьюдента стремится к нормальному. Поэтому практически при n>30 можно вместо него пользоваться нормальным распределением. При малых n это приводит к значительным ошибкам.

Доверительный интервал для оценки среднего квадратического отклонения  нормального распределения


Пусть количественный признак X генеральной совокупности распределен нормально и требуется оценить неизвестное генеральное среднее квадратическое отклонение  по исправленному выборочному среднему квадратическому отклонению s. Найдем доверительные интервалы, покрывающие параметр  с заданной надежностью .

Потребуем, чтобы выполнялось соотношение:

или .

Преобразуем двойное неравенство в равносильное неравенство и обозначим /s=q. Имеем:

(A)

и необходимо найти q. С этой целью введем в рассмотрение случайную величину .

Оказывается, величина распределена по закону с n–1 степенями свободы. Плотность распределения  имеет вид:



Это распределение не зависит от оцениваемого параметра , а зависит только от объема выборки n.

Преобразуем неравенство (A) так, чтобы оно приняло вид . Вероятность этого неравенства равна заданной вероятности , т.е. .

Предполагая, что q<1, перепишем (A) в виде:

,

далее, умножим все члены неравенства на :

или .

Вероятность того, что это неравенство, а также равносильное ему неравенство (A) будет справедливо, равна:

.

Из этого уравнения можно по заданным найти , используя имеющиеся расчетные таблицы. Вычислив по выборке и найдя по таблице , получим искомый интервал (A1), покрывающий  с заданной надежностью .

Пример. Количественный признак X генеральной совокупности распределен нормально. По выборке объема n=25 найдено исправленное среднее квадратическое отклонение s=0.8. Найти доверительный интервал, покрывающий генеральное среднее квадратическое отклонение  с надежностью 0,95.

Решение. Используя заданные значения , по таблице находим значение q=0.32. Искомый доверительный интервал есть:

.

Необходимо сделать замечание. Мы предполагали, что q<1. Если это не так, то мы придем к соотношениям:

.

Следовательно, значение q >1 может быть найдено из уравнения: