Курс лекций Рекомендовано редакционно-издательским советом Орелгту в качестве учебного пособия Орел 2005
Вид материала | Курс лекций |
СодержаниеА), либо мы остаемся (В |
- Конспект лекций Рекомендовано в качестве учебного пособия Редакционно-издательским, 1023.31kb.
- Прокурор в уголовном процессе, 2839.04kb.
- Нефтяное товароведение, 1449.59kb.
- А. С. Калмыкова Главный внештатный детский инфекционист, 1294.52kb.
- Учебное пособие Рекомендовано в качестве учебного пособия Редакционно-издательским, 2331.42kb.
- Рекомендовано в качестве конспекта лекций Редакционно-издательским советом Томского, 1088.59kb.
- И. З. Шарипов материаловедение рекомендовано редакционно-издательским советом угату, 1223.16kb.
- Пособие подготовлено на кафедре экономической теории © Новосибирский государственный, 754.49kb.
- А. В. Терентьев менеджмент организации курсовое и диплом, 2230.76kb.
- Методические указания к курсовому и дипломному проектированию Москва 2007, 873.19kb.
Пример. Отрицающе-утверждающая схема:
Либо мы уходим ( А), либо мы остаемся (В).
Мы не уходим (А).
Мы остаемся (В).
3. Дилеммы (условно-разделительные силлогизмы) – это умозаключения, в которых две посылки – условные суждения, одна – разделительное, а заключение - либо простое суждение (в простой дилемме), либо сложное разделительное (дизъюнктивное) суждение (в сложной дилемме).
Виды дилемм:
а) простая конструктивная дилемма: | б) простая деструктивная дилемма: |
А®С, В®САÚВ С | А®В, А®С ùВÚùС ùА |
в) сложная конструктивная дилемма: | г) сложная деструктивная дилемма: |
А®В, С®D AÚC BÚD | A®B, C®D ùBÚùD ùAÚùC |
Пример. «Если вы будете говорить правду (А), люди проклянут вас (В), а если будете лгать (С), то вас проклянут боги (D). Но вы можете только говорить правду (A) или лгать (C). Значит, вас проклянут боги (D) или люди (B)». Если мы выпишем из этого рассуждения только буквенные обозначения простых суждений, соединив их соответствующими логическими связками, то получим форму сложной конструктивной дилеммы.
Имеется и еще одна форма дилемм – конструктивно-деструктивные, или деструктивно-конструктивные. В этих умозаключениях некоторые из членов разделительной посылки указывают на наличие оснований условных посылок, а некоторые – отрицают следствия (консеквенты) других условных посылок. Например, конструктивно-деструктивной является дилемма вида:
АВ, CD
AD
BC
4. Чисто условные умозаключения – это вывод из любого количества посылок, которые представляют собой условные суждения и заключения которых также являются условными суждениями. К этим умозаключениям, в частности, относятся транзитивность импликации и правило контрапозиции.
а) транзитивность импликации:
А®В, В®С
А®С
Пример. «Если лобная кора головного мозга повреждена (A), то взаимодействие личности с внешней средой нарушается (B). В этом случае (B) человек утрачивает реальное восприятие действительности (C), а значит (C), превращается в раба ситуации (D)». Это умозаключение имеет форму транзитивности импликации с тремя посылками:
AB, BC, CD
AD
б) правило контрапозиции:
А®В
ùВ®ùА
Пример. «Если человек знает геометрию (А), то он знает теорему Пифагора (В). Следовательно, если он не знает теоремы Пифагора (В), то он не знает геометрии (А).
Все приведённые выше формы умозаключений являются правильными, то есть их соблюдение гарантирует правильность заключения при истинности посылок. Иногда эти формы называют правилами соответствующих умозаключений.
Для проверки правильности умозаключений, не сводимых к этим типам, используется, прежде всего, табличный метод. Он основан на том, что между посылками и заключением дедуктивного умозаключения должно существовать отношение логического следования, означающее, что заключение не может быть ложным, если все посылки истинны.
Чтобы проверить правильность умозаключения табличным способом, нужно составить формулу этого умозаключения. Для этого следует:
- записать посылки и заключение на языке логики суждений;
- соединить между собой посылки с помощью конъюнкции;
- присоединить заключение к посылкам с помощью импликации;
- для полученной формулы составить таблицу истинности.
Умозаключение будет правильным (гарантирующим истинность заключения при истинности посылок) только в том случае, если его формула является тождественно истинной (в последнем столбце таблицы все значения – «истина»).
Пример. «Если философ – дуалист, то он не материалист. Если он не материалист, то он диалектик или метафизик. Он не метафизик. Следовательно, он диалектик или дуалист».
Данное умозаключение довольно сложно привести к какому-либо традиционному типу, поэтому проверим его правильность табличным способом.
Запишем посылки и заключение нашего суждения на языке логики суждений. Обозначим: р – философ – дуалист; q – философ – материалист; r – философ – метафизик; s – философ – диалектик.
Тогда первая посылка – «Если философ – дуалист (р), то он не материалист (q)» – на языке логики суждений имеет вид:
рq.
Вторая посылка – «Если он не материалист (q), то он диалектик (s) или метафизик (r)» – запишется так:
qsr.
Третья посылка – «Он не метафизик»:
r.
Заключение – «Он диалектик (s) или дуалист (р)»:
sр.
Соединяя посылки конъюнкцией () и присоединяя к ним заключение импликацией (), получаем формулу:
[(рq)(qsr)r](sр).
Для этой формулы составляем таблицу истинности:
| p | q | r | s | q | r | A | B | C | D | E | F | |
(рq) | sr | qB | AC | Dr | sр | DF | |||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
1 | И | И | И | И | Л | Л | Л | И | И | Л | Л | И | И |
2 | Л | И | И | И | Л | Л | И | И | И | И | Л | И | И |
3 | И | Л | И | И | И | Л | И | И | И | И | Л | И | И |
4 | Л | Л | И | И | И | Л | И | И | И | И | Л | И | И |
5 | И | И | Л | И | Л | И | Л | И | И | Л | Л | И | И |
6 | Л | И | Л | И | Л | И | И | И | И | И | И | И | И |
7 | И | Л | Л | И | И | И | И | И | И | И | И | И | И |
8 | Л | Л | Л | И | И | И | И | И | И | И | И | И | И |
9 | И | И | И | Л | Л | Л | Л | И | И | Л | Л | И | И |
10 | Л | И | И | Л | Л | Л | И | И | И | И | Л | Л | Л |
11 | И | Л | И | Л | И | Л | И | И | И | И | Л | И | И |
12 | Л | Л | И | Л | И | Л | И | И | И | И | Л | Л | Л |
13 | И | И | Л | Л | Л | И | Л | Л | И | Л | Л | И | И |
14 | Л | И | Л | Л | Л | И | И | Л | И | И | И | Л | Л |
15 | И | Л | Л | Л | И | И | И | Л | Л | Л | Л | И | И |
16 | Л | Л | Л | Л | И | И | И | Л | Л | Л | Л | Л | И |
Получилась выполнимая формула, так как последний столбец таблицы истинности содержит и значения «истина», и значения «ложь». Это говорит о том, что умозаключение вероятное.
При проверке правильности умозаключений можно не строить таблицу полностью, а, получив значения истинности посылок и заключения, ограничиваться рассмотрением только тех строк, в которых все посылки принимают значения «истина». Так, в данном примере, получив значения в столбцах 6 (третья посылка), 7 (первая посылка), 9 (вторая посылка) и 12 (заключение), мы могли бы исследовать только строки 6, 7, 8, 14.
Дело в том, что, с одной стороны, вести речь об истинности заключения имеет смысл только при условии истинности посылок. При ложных посылках даже правильное по форме умозаключение не может гарантировать истинности заключения. А, с другой стороны, проверяя правильность умозаключения, мы, по существу, проверяем, соблюдается ли в нем отношение логического следования между посылками и заключением. Оно как раз и состоит в том, что во всех случаях, когда посылки - истинные суждения, заключение - также истинное суждение, и ни в одной строке таблицы не наблюдается случая, когда все посылки истинны, а заключение ложно. При ложной же посылке мы вообще не можем говорить об отношении логического следования.